A precise digital algorithm based on Discrete Fourier Transforms (DFT) to estimate the frequency of a sinusoid with harmonics in real-time is proposed. This algorithm that we called the Smart Discrete Fourier Transforms (SDFT) smartly avoids the errors that arise when frequency deviates from the nominal frequency, and keeps all the advantages of the DFT e.g., immune to harmonics and the recursive computing can be used in SDFT. These make the SDFT more accurate than conventional DFT based techniques. In addition, this method is recursive and very easy to implement, so it is very suitable for use in real-time. We provide the simulation results compared with a conventional DFT method and second-order Prony method to validate the claimed benefits of SDFT.
With the increasing use of nonlinear loads in power systems, the harmonic pollution becomes more and more serious. It is well known that fast Fourier transform (FFT) is a powerful tool for power signal harmonic analysis, but leakage effect, picket fence effect, and aliasing effect make FFT suffer from specific restrictions. In this paper, we proposed a new method for power signal harmonic analysis. The major components of this method are a frequency and phasor estimating algorithm, a finite-impulse-response comb filter, and a correction factor. We also combine other methods to enhance our performance, such as discrete Fourier transform and least square error (LSE) method. To verify this method, we provided the comparisons of this method with FFT. Index Terms-Fast Fourier transform (FFT), finite-impulse-response (FIR) comb filter, harmonic analysis.
An adaptive fault detection/location technique based on Phasor Measurement Unit (PMU) for an EHV/UHV transmission line is presented in this two paper set. This paper is Part I of this set. A fault detection/location index in terms of Clarke components of the synchronized voltage and current phasors is derived. The line parameter estimation algorithm is also developed to solve the uncertainty of parameters caused by aging of transmission lines. This paper also proposes a new Discrete Fourier Transform (DFT) based algorithm (termed as Smart Discrete Fourier Transform, SDFT) to eliminate system noise and measurement errors such that extremely accurate fundamental frequency components can be extracted for calculation of fault detection/location index. The EMTP was used to simulate a high voltage transmission line with faults at various locations. To simulate errors involved in measurements, Gaussian-type noise has been added to the raw output data generated by EMTP. Results have shown that the new DFT based method can extract exact phasors in the presence of frequency deviation and harmonics. The parameter estimation algorithm can also trace exact parameters very well. The accuracy of both new DFT based method and parameter estimation algorithm can achieve even up to 99.999% and 99.99% respectively, and will be presented in Part II. The accuracy of fault location estimation by the proposed technique can achieve even up to 99.9% in the performance evaluation, which is also presented in Part II.
Index Terms-FaultDetection/Location Index, Discrete Fourier Transforms (DFT), Phasor Measurement Unit (PMU).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.