Intracortical microelectrode array recordings generate a variety of neural signals with potential application as control signals in neural interface systems. Previous studies have focused on single and multiunit activity, as well as low frequency local field potentials (LFPs), but have not explored higher frequency (>200 Hz) LFPs. In addition, the potential to decode three dimensional (3-D) reach and grasp kinematics based on LFPs has not been demonstrated. Here, we use mutual information and decoding analyses to probe the information content about 3-D reaching and grasping of 7 different LFP frequency bands in the range of 0.3 Hz -400 Hz. LFPs were recorded via 96-microelectrode arrays in primary motor cortex (M1) of two monkeys performing free reaching to grasp moving objects. Mutual information analyses revealed that higher frequency bands (e.g. 100 -200 Hz and 200 -400 Hz) carried the most information about the examined kinematics. Furthermore, Kalman filter decoding revealed that broadband high frequency LFPs, likely reflecting multiunit activity, provided the best decoding performance as well as substantial accuracy in reconstructing reach kinematics, grasp aperture and aperture velocity. These results indicate that LFPs, especially high frequency bands, could be useful signals for neural interfaces controlling 3-D reach and grasp kinematics.
Index TermsBrain machine interface; Kalman filter; local field potential; motor cortex; multi-unit activity
In this paper we present an optimal wavelet packet (OWP) method based on Davies-Bouldin criterion for the classification of surface electromyographic signals. To reduce the feature dimensionality of the outputs of the OWP decomposition, the principle components analysis was employed. Then we chose a neural network classifier to discriminate four types of prosthesis movements. The proposed method achieved a mean classification accuracy of 93.75%, which outperformed the method using the energy of wavelet packet coefficients (with mean classification accuracy 86.25%) and the fuzzy wavelet packet method (87.5%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.