Our findings reveal a new regulatory pathway of YY1/HDACs/miR-155/HBP1 in macrophage-derived foam cell formation during early atherogenesis and suggest that miR-155 is a potential therapeutic target for atherosclerosis.
MicroRNAs are involved in several aspects of cardiac hypertrophy, including cardiac growth, conduction, and fibrosis. However, their effects on the regulation of the cardiomyocyte cytoskeleton in this pathological process are not known. Here, with microRNA microarray and small RNA library sequencing, we show that microRNA-1 (miR-1) is the most abundant microRNA in the human heart. By applying bioinformatic target prediction, a cytoskeleton regulatory protein twinfilin-1 was identified as a potential target of miR-1. Overexpression of miR-1 not only reduced the luciferase activity of the reporter containing the 3′ untranslated region of twinfilin-1 mRNA, but also suppressed the endogenous protein expression of twinfilin-1, indicating that twinfilin-1 is a direct target of miR-1. miR-1 was substantially downregulated in the rat hypertrophic left ventricle and phenylephrine-induced hypertrophic cardiomyocytes, and accordingly, the protein level of twinfilin-1 was increased. Furthermore, overexpression of miR-1 in hypertrophic cardiomyocytes reduced the cell size and attenuated the expression of hypertrophic markers, whereas silencing of miR-1 in cardiomyocytes resulted in the hypertrophic phenotype. In accordance, twinfilin-1 overexpression promoted cardiomyocyte hypertrophy. Taken together, our results demonstrate that the cytoskeleton regulatory protein twinfilin-1 is a novel target of miR-1, and that reduction of miR-1 by hypertrophic stimuli induces the upregulation of twinfilin-1, which in turn evokes hypertrophy through the regulation of cardiac cytoskeleton.
Objective: To investigate the role of endothelial miR-126 in zebrafish vascular development. Methods and Results: Two homologs of miR-126, miR-126a (namely miR-126 in previous literature) and miR-126b, with only 1 nucleotide difference in their mature sequences, were identified in zebrafish genome. In vitro analysis showed that both precursors could sufficiently produce mature functional miRNAs. Expression analyses by Northern blot and quantitative RT-PCR showed that both miR-126s accumulated significantly 12 hours after fertilization and were specifically expressed in endothelial cells of zebrafish. Inhibition of miR-126a or miR-126b with specific morpholinos caused cranial hemorrhage, and simultaneous inhibition of both miR-126s resulted in a pronounced hemorrhage in higher percentage of embryos. Bioinformatics prediction showed that the targets of miR-126a/b partially overlapped but essentially differed. p21-activated kinase1 (pak1) was identified as a novel target of miR-126a/b, and pak1 3 untranslated region was differently regulated by these 2 miRNAs. Quantitative RT-PCR, in situ hybridization, and Western blot analyses showed that the level of pak1 was reduced when miR-126a/b were overexpressed. Notably, pak1 expression in endothelial cells was increased when miR-126a/b were knocked down. Furthermore, overexpression of the active form of human pak1 caused cranial hemorrhage, and knockdown pak1 effectively rescued the hemorrhage caused by inhibiting miR-126a/b. Key Words: miR-126 Ⅲ pak1 Ⅲ vascular development Ⅲ zebrafish T he vascular system is critical for the maintenance of blood flow to provide the organism with nutrition and oxygen. Endothelial cells play a central role in the organization and homeostasis of the functional vascular vessels. Their lineage commitment, proliferation, migration, and assembling are required for embryonic development and organogenesis. 1 MicroRNAs (miRNAs) are a set of small noncoding 18-to 22-nucleotide RNAs that regulate gene expression at the posttranscriptional level. 2 Emerging evidence showed that miRNAs are involved in development and various processes of pathogenesis. 3 To date, several miRNAs have been reported to play important roles in vascular development and diseases. 4 Among these miRNAs, miR-126 is an endothelial cell-enriched miRNA that regulates vascular development and angiogenesis by affecting vascular integrity and angiogenic signal pathways. [5][6][7] Zebrafish is an excellent model in vascular biology, because this organism is quickly developed and is transparent in the early days of development. Various transgenic lines 8 -10 are available to track the endothelial cells and hematopoietic cells, which greatly facilitated the investigation. Interestingly, many genes in this organism are duplicated, 11 and gene Original received May 25, 2010; revision received November 23, 2010; accepted November 29, 2010. In October 2010, the average time from submission to first decision for all original research papers submitted to Circulation Research was 13.9 ...
NOD-like receptor family caspase recruitment domain family domain containing 5 (NLRC5) has important roles in inflammation and innate immunity. NLRC5 was highly expressed in kidney from streptozotocin-induced diabetic mice, db/ db mice and patients with diabetes. Based on that evidence, the present study was designed to explore the roles of NLRC5 in the progression of diabetic nephropathy (DN). We examined kidney injury, including inflammation and fibrosis in Nlrc5 gene knockout ( Nlrc5) and wild-type (WT) diabetic mice. We found that Nlrc5 mice developed less-severe diabetic kidney injury compared with WT mice, exhibiting lower albuminuria, less fibronectin and collagen IV expression, and reduced macrophage infiltration but greater levels of podocin and nephrin in the diabetic kidney. The underlying mechanisms were further investigated in vitro with peritoneal macrophages and mesangial cells treated with high glucose. Reduced proinflammatory effect was observed in peritoneal macrophages from Nlrc5 mice, associated with NF-κB pathway suppression. Knocking down of NLRC5 in mesangial cells in high-glucose conditions was also associated with reduced NF-κB and TGF-β/Smad signaling. Taken together, NLRC5 promotes inflammation and fibrosis during DN progression partly through the effects on NF-κB and TGF-β/Smad pathways. NLRC5 may, therefore, be a promising therapeutic target for DN treatment.-Luan, P., Zhuang, J., Zou, J., Li, H., Shuai, P., Xu, X., Zhao, Y., Kou, W., Ji, S., Peng, A., Xu, Y., Su, Q., Jian, W., Peng, W. NLRC5 deficiency ameliorates diabetic nephropathy through alleviating inflammation.
MicroRNAs are endogenous small RNA molecules that regulate gene expression. Although the biogenesis of microRNAs and their regulation have been thoroughly elucidated, the degradation of microRNAs has not been fully understood. Here by using the pulse–chase approach, we performed the direct measurement of microRNA lifespan. Five representative microRNAs demonstrated a general feature of relatively long lifespan. However, the decay dynamic varies considerably between these individual microRNAs. Mutation analysis of miR-29b sequence revealed that uracils at nucleotide position 9–11 are required for its rapid decay, in that both specific nucleotides and their position are critical. The effect of uracil-rich element on miR-29b decay dynamic occurs in duplex but not in single strand RNA. Moreover, analysis of published data on microRNA expression profile during development reveals that a substantial subset of microRNAs with the uracil-rich sequence tends to be down-regulated compared to those without the sequence. Among them, Northern blotting shows that miR-29c and fruit fly bantam possess a relatively rapid turnover rate. The effect of uracil-rich sequence on microRNA turnover depends on the sequence context. The present work indicates that microRNAs contain sequence information in the middle region besides the sequence element at both ends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.