Circular dichroism (CD) is an interesting phenomenon originating from the interaction of light with chiral molecules or other nanostructures lacking mirror symmetries in three-dimensional (3D) or two-dimensional (2D) space. While the observable effects of optical chirality are very weak in most of the natural materials, they can be designed and significantly enhanced in synthetic chiral structures, where the spatial symmetry of their component are broken on a nanoscale. Therefore, fabrication of composites capable of cheap, time-saving, and giant CD is desirable for the advanced optical technologies. Here, the giant CD of large-area metal nanocrescent array structures was investigated theoretically and experimentally. The largest value of the CD spectrum measured was larger than 0.5, and the CD spectrum was tuned effectively and extensively while maintaining a large peak intensity, which can be attributed to the selective excitation of the lattice surface modes (LSMs) by circularly polarized light. The analysis of the extrinsic chiral structure shows potential applications in chiral molecule sensing and polarizing imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.