Aim China has dozens of well‐recognized biodiversity hotspots, but many more potential areas have not been estimated thoroughly, which is unfavourable for biodiversity conservation. Neotenic net‐winged beetles with limited dispersal ability generally occur in restricted ranges but rarely occur in China, which makes them ideal models for biogeographical studies to define biodiversity hotspots. This study will explore the potential distribution patterns of neotenic Lycidae in China to provide basic data for the implementation of biological conservation. Location China. Methods We conducted maximum entropy (MaxEnt) and random forest (RF) modelling to simulate the habitat suitability for neotenic Lycidae occurring in China under different climate scenarios by using all available distribution information in Southeast Asia (a total of 305 occurrence records) and several environmental variables. The dynamic changes in the potentially suitable habitats and centroids of neotenic Lycidae were simulated under all climate scenarios. Results The results indicated that potentially suitable habitats for neotenic Lycidae were mostly located in the montane areas and mountainous islands in southern China, including the eastern Himalayas, Gaoligong Mountains, Ailao Mountains, Hengduan Mountains, Wumeng Mountains, Miaoling Mountains, Daba Mountains, Wu Mountains, Yunkai Mountains, Wuzhi Mountains and Central Mountains. In addition, the dynamic analyses showed that their changes also occurred in montane areas, whose affinity and significance were confirmed in the biological conservation. Main conclusions Taking the unique neotenic Lycidae as the subject, we verify that several montane areas are biodiversity hotspots that have already been well‐recognized, while it is determined that some additional mountains could be potential hotspots. Therefore, more attention and biological conservation efforts should be used in these areas. In addition, using the ensemble modelling approach to identify potential distributions is a helpful tool to develop strategies for biological conservation, even if it has several limitations.
China is currently in a stage of high-quality economic development, but the high energy consumption and high pollution production methods of the construction industry are no longer adaptable to the country’s economic development goals in the new era. As one of the important tools for the government to regulate high-quality advancement, taxation plays a vital role in the green development of the construction industry. This research uses panel data of 26 provinces in China from 2008 to 2017 and constructs a multiple intermediary effect model to conduct an empirical test on the impact of green taxes on the carbon emission efficiency of the construction industry and its mechanism. The results show that green taxation promotes carbon emission efficiency by accelerating the promotion of fixed capital investment in this industry, accelerating the flow of technological elements and technological research and development. This study further verifies that green taxation and carbon emission efficiency present an inverted U-shape relationship, and that the path mechanism of green taxation, fixed capital investment and technological progress-improving carbon emission efficiency of the construction industry has an intermediary effect. On this basis, suggestions are offered to rationally adjust the corporate tax burden, optimize the industrial structure, and actively guide the green transformation of the construction industry.
Osphya Illiger (Melandryidae: Osphyinae) as a species-poor insect group, exhibits a widespread distribution in the Northern Hemisphere, however, the research of the genus is poorly documented especially in East Asia. Herein, an interesting species is discovered in Shennongjia National Natural Reserve (Hubei, China). The examination of morphological characters and comparisons with others show it to be a new member of Osphya, which is described under the name of O. sinensis sp. n. The characteristic photos and a key to the species of Osphya from East Asia are provided. Meanwhile, the mitochondrial genome of O. sinensis sp. n. is sequenced and annotated. Based on this obtained mitogenome and the publicly available data, we reconstructed the phylogeny of Tenebrionoidea by different cladistics methods to investigate the relationships between the new species with others. The results consistently recover O. sinensis sp. n. sister to O. bipunctata (Fabricius) with high supporting values, which further confirm the placement of the new species in the genus Osphya. This is the first time reporting the genus Osphya, the only representative genus of melandryid Osphyinae from mainland China, which enriches the diversity of beetles from the Chinese fauna at both generic and subfamilial levels.
The Cephalomalthinus semifumatus species group, referred to as the “semifumatus” group henceforth, is interesting because of its heterogeneous morphology resembling either Cephalomalthinus Pic, 1921 or Rhagonycha Eschscholtz, 1830. To elucidate its phylogenetic status, mitochondrial genomes of four species of the “semifumatus” group, 11 Cephalomalthinus species, and 11 Rhagonycha species were sequenced and examined. All analysed mitogenomes were similar with respect to genome size, nucleotide composition, and AT content. Surprisingly, a rearrangement of the trnW‐trnC and trnY genes was detected in the “semifumatus” group, presumably caused by tandem duplication and random loss events. Furthermore, genetic distance analyses showed that the proximity of the “semifumatus” group to Cephalomalthinus and to Rhagonycha was comparable to that between the latter two. Moreover, the produced phylogeny strongly supported the monophyly of the “semifumatus” group, and molecular clock analyses dated its divergence from Cephalomalthinus to 32.52 Ma. Thus, the new genus Amphimorphus gen. nov. is suggested to comprise the “semifumatus” group, in which the observed gene rearrangement was a synapomorphy. Moreover, morphological evidence regarding the unique structure of the aedeagus supported this separation. These results indicate that mitochondrial gene rearrangement provide important phylogenetic implications for revising Cephalomalthinus, a speciose genus that is puzzling in the morphology‐based taxonomy.
The genus Troglocollops Wittmer, 1965 is reported from China for the first time. A new species is described and illustrated under the name Troglocollops (Troglocollopsoides) sinicus Tong & Yang, sp. nov. from Xinjiang, China. This new species can be easily distinguished from other species of Troglocollops by the body coloration (pronotum yellow with a black longitudinal stripe in the middle, elytra black with blue metallic lustre and yellow margination of apices), antennomere 1 somewhat smaller than 3, and endophallus with five strong spines and two groups of small spines near apex. An identification key to all known species of Troglocollops is updated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.