Promoting the separation of photogenerated charges and enhanced optical absorption capacity is the main means to modify photocatalytic capacities to advance semiconductor photocatalyst applications. For the first time, a novel ternary photocatalyst for dual Z-scheme system AgBr/LaNiO3/g-C3N4 (ALG) was prepared via a modest ultrasound-assisted hydrothermal method. The results indicated that LaNiO3 nanoballs and AgBr nanoparticles were successfully grown on the surface of g-C3N4 nanosheets. A dual Z-scheme photocatalytic reaction system could be constructed based on the energy band matching within AgBr, LaNiO3 and g-C3N4. Metallic Ag during the photocatalytic reaction process acted as the active electrons transfer center to enhance the photocatalytic charge pairs separation. The chemical composition of ALG was optimized and composites with 3% AgBr, 30% LaNiO3 and 100% g-C3N4 which was noted as 3-ALG displayed the best photocatalytic performance. A total of 92% of norfloxacin (NOR) was photodegraded within two hours over ALG and the photodegradation rate remained >90% after six cycles. The main active species during the degradation course were photogenerated holes, superoxide radical anion and hydroxyl radical. A possible mechanism was proposed based on the synergetic effects within AgBr, LaNiO3 and g-C3N4. This work would offer a credible theoretical basis for the application of dual Z-scheme photocatalysts in environment restoration.
AgI/MFeO3/g-C3N4 (M = Y, Gd, La) nano sheet–sphere–sheet photocatalysts were synthesized by a simple ultrasound-assisted hydrothermal approach. We characterized the microstructure, surface morphology, and optical absorption capacity of the obtained samples. According to the characterization results, AgI/MFeO3/g-C3N4 (M = Y, Gd, La) nano sheet–sphere–sheet photocatalysts were successfully obtained. MFeO3 nanospheres and AgI nanosheets were dispersed evenly on the surface of g-C3N4 nanosheets. AgI/MFeO3/g-C3N4 showed remarkable photocatalytic. Especially, 95% of NOF was photodegradated over AgI/LaFeO3/g-C3N4 within 3 h and the higher photocatalytic performance still remained after six cycles. Additionally, The N2 adsorption–desorption isotherms of AgI/MFeO3/g-C3N4 showed that AgI/LaFeO3/g-C3N4 possessed the highest specific surface area (79.32 m2/g). The result of scavenging experiment revealed that ·O2−, h+, and ·OH were the main roles in the photodegradation process. Benefitting from the nice energy band matching, MFeO3 acted as the center of photogenerated electrons migration and separation provided more direct electron channels. This work proposes an effective approach for the design and configuration of dual Z-scheme photocatalysts to accomplish the removal of organic contaminants based on g-C3N4.
In this study, novel photocatalysts MVO4/g-C3N4 (M = La, Gd) were prepared by the hydrothermal method, through which different loading amounts of 10–50%MVO4 and g-C3N4 were mixed and ultrasonically oscillated to gain heterojunction catalysts. All the samples were characterized by XRD, SEM, TEM, FT-IR, XPS, Us-vis, and PL to ensure the successful integration of LaVO4 and GdVO4 with g-C3N4. The obtained results showed that MVO4/g-C3N4 could effectually improve the separation efficiency of photogenerated carriers during the photodegradation process, thus improving the photodegradation efficiency, while among them, 40%GdVO4/g-C3N4 showed the best photocatalytic performance and degradation of tetracycline hydrochloride, reaching up to 91% for 3 h, which was 3.64 times higher than pristine g-C3N4. From the discussed results above, the possible mechanism of the photodegradation process was put forward. This study supplies a promising method to gain g-C3N4-based photocatalysts for antibiotics removal.
In this work, an SrSnO3/g-C3N4 heterojunction with different dosage of SrSnO3 was fabricated by an ultrasound-assisted hydrothermal approach and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectra (UV-Vis DRS), and photoluminescence spectroscopy (PL). Ciprofloxacin was adopted to assess the degradation performance, and the sample combined with 40% SrSnO3 eliminated 93% of ciprofloxacin (20 mg/L) within 3 h under visible light, which is 6.6 and 1.7 times greater than for SrSnO3 and g-C3N4, respectively. Furthermore, 85% CIP was extinguished after five cycles of a photocatalytic process. Ultimately, a possible photocatalytic mechanism was dissected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.