MicroRNAs (miRNAs), which regulate gene expression by partial complementarity to the 3' untranslated region of their target genes, have been implicated in cancer initiation and progression. However, the molecular mechanism underlying the regulation of miRNA expression during pancreatic tumorigenesis has not been extensively reported. In this study, we first compared the miRNA expression in human pancreatic cancers and adjacent normal tissues by miRNA array and identified 12 differentially expressed miRNAs. miR-132, which is downregulated in tumors, was further studied in greater detail. Decreased expression of miR-132 was confirmed in 16 of 20 pancreatic carcinomas (P < 0.0001), compared with their respective benign tissues by TaqMan miRNA assays. miR-132 expression was remarkably influenced by promoter methylation in PANC1 and SW1990 cells. Promoter hypermethylation was observed in tumor samples but not in the normal counterparts, and the expression of miR-132 negatively correlated with its methylation status (P = 0.013). miR-132 was transcribed by RNA polymerase II, and Sp1 played a major role in miR-132 transcription. The expression of Sp1 correlated with that of miR-132 in tissues. Moreover, cancerous tissues showed significantly lower Sp1-binding affinity to the miR-132 promoter, relative to non-tumor samples. Proliferation and colony formation of pancreatic cancer cells were suppressed in cells transfected with miR-132 mimics and enhanced in cells transfected with miR-132 inhibitor by negatively regulating the Akt-signaling pathway. Our present findings illustrate the mechanism driving miR-132 downregulation and the important role of miR-132 in pancreatic cancer development.
Immunotherapy has become a promising alternative therapeutic approach for cancer patients. Interruption of immune checkpoints, such as CTLA-4 and PD-1, has been verified to be a successful means for cancer therapy in clinical trials. mAb targeting PD-L1 has been approved to treat urothelial carcinoma, non-small cell lung cancer, or Merkel cell carcinoma by the FDA. However, the high cost of the antibody can limit its application. In our study, targeting PD-L1 peptide (TPP-1), which specifically binds to PD-L1 with high affinity, was identified through bacterial surface display methods. Using a T-cell activation assay and mixed lymphocyte reaction, TPP-1 was verified to interfere with the interaction of PD-1/PD-L1. To examine the inhibitory effect of TPP-1 on tumor growth , a xenograft mouse model using H460 cells was established. The growth rate of tumor masses in TPP-1 or PD-L1 antibody-treated mice was 56% or 71% lower than that in control peptide-treated mice, respectively, indicating that TPP-1 inhibits, or at least retards, tumor growth. IHC of the tumors showed that IFNγ and granzyme B expression increased in the TPP-1 or PD-L1 antibody-treated groups, indicating that TPP-1 attenuates the inhibitory effect of PD-L1 on T cells and that T cells may get reactivated. On the basis of our data, TPP-1 peptide could work as an alternative to antibodies for tumor immunotherapy..
Background:The mechanisms of PPAR␣-mediated inhibition of tumor growth and angiogenesis remain unknown. Results: Activation of PPAR␣ suppresses hypoxia-induced HIF-1␣ signaling via promoting HIF-1␣ degradation and diminishes hypoxia-induced VEGF secretion from cancer cells and tube formation by endothelial cells. Conclusion: Activation of PPAR␣ suppresses the HIF-1␣ signaling pathway in cancer cells. Significance: The results support the development of PPAR␣ agonists as anticancer agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.