-This paper presents an advanced torque ripple minimization method of a switched reluctance motor (SRM) using torque sharing function (TSF). Generally, TSF is applied into the torque control. However, the conventional TSF cannot follow the expected torque well because of the nonlinear characteristics of the SRM. Moreover, the tail current that is generated at a high speed motor drive makes unexpected torque ripples. The proposed method combined TSF with fuzzy logic control (FLC). The advantage of this method is that the torque can be controlled unity at any conditions. In addition, the controller can track the torque under the condition of the wrong TSF. The effectiveness of the proposed algorithm is verified by the simulations and experiments.
This paper proposes a simple active damping algorithm for small-scale wind power systems with an LCL filter. Compared to an L filter or an LC filter, an LCL filter can decrease the harmonics induced by low switching frequencies and produce a satisfactory grid-side current using a comparatively low inductance. Additional active damping of the filter resonance is necessary when an LCL filter is used. This paper introduces an active damping method using a Discrete Fourier Transform (DFT) filter to improve performance without additional sensors or complexity. Experimental results are shown to verify the validity of the proposed algorithm as an active damping method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.