The 1,2,3‐triazole molecule, which is a product of click chemistry, possesses a high dipole moment and can be a useful polar motif for ferroelectric columnar liquid crystal (LC) materials—though it has not been used to date. Herein, we report the helical assembly and ferroelectric switching properties of a columnar liquid crystal comprising a naphthalene core and 1,2,3‐triazolyl linkages. The molecule assembles into a double‐stranded helical columnar LC structure (Colhel). The X‐ray simulations of cisoid and transoid columnar models suggest that the helical assembly comprises cisoid conformers with a non‐zero dipole moment. The helical columns in the Colhel phase are aligned homeotropically under an electric field. The ferroelectric switching of the axial polarization can be observed in the temperature range of 105–115 °C in the Colhel phase, wherein the triazolyl hydrogen bonding along the column axis is weakened. The ferroelectric switching event is attributed to the rotation of the polar triazolyl units in response to the electric field.
Water dispersible ZnS:Mn nanocrystals were synthesized by capping the surface of the nanocrystals with four kinds of aminoacids ligands: arginine, cystein, histidine, and methionine. The aminoacids capped ZnS:Mn nanocrystal powders were characterized by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the aminoacids capped ZnS:Mn colloidal nanocrystals were also measured by UV/Vis and solution photoluminescence (PL) spectroscopies in aqueous solvents. The solution PL spectra showed broad emission peaks around 575 nm (orange light emissions) with PL efficiencies in the range of 4.4 to 7.1%. The measured particle sizes for the aminoacid capped ZnS:Mn nanocrystals by HR-TEM images were in the range of 5.3 to 11.7 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.