Although the typical antioxidant, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), ensures high durability and long lifespan for rubber compounds, it generates a highly toxic quinone in water, causing serious environmental pollution. Herein, as an alternative material of 6PPD, we newly introduce ecofriendly amine-functionalized lignin (AL) to be incorporated in rubber, which can provide excellent combinatorial antiaging properties of thermal stability and ozone/fatigue resistances through radical scavenging effect. The heterolytic ring-opening reaction of AL and sulfur can accelerate curing and improve the cross-link density by 28% (v, 4.107 × 10 −4 mol/cm 3 ), consequently reducing the ozone vulnerable areas of the matrix and further improving the aging resistance. Notably, AL allows its rubber compound to exhibit superior anti-ozone performance after ozone aging, with the arithmetic surface roughness (Sa) of 2.077 μm, which should be compared to that of 6PPD (4.737 μm). The developed chemically modified lignin and the methodology have enormous potential as a promising additive for future eco-friendly rubber compounds. The eco-friendly lignin-based antioxidant manufactured by amination reaction has the potential to reduce environmental pollution for the future rubber industry.
As highly integrated electronic devices and automotive parts are becoming used in high-power and load-bearing systems, thermal conductivity and mechanical damping properties have become critical factors, which could be enhanced by the composites with the different-shaped hybrid fillers.
Reducing the thickness of transparent paper without losing its outstanding optical haze and transmittance remains a challenge due to their trade-off relationship. Herein, an all-cellulose transparent paper composed of cellulose nanofibril (CNF) and carboxymethyl cellulose (CMC) is developed by electrophoretic deposition (EPD) thanks to the good film-forming ability of the CMC. The thickness of the paper can be controlled in the range of 2.4−30 μm depending on the applied voltage and deposition time. The optical properties and mechanical strength are adjusted by the sonication time and the ratio between CNF and CMC, since the CNF works as a lightscattering source and mechanical reinforcement agent. Consequently, a robust all-cellulose paper with a thickness of 10 μm exhibiting high transmittance (up to 96%) and haze (up to 89%) is successfully fabricated. As our paper has competitive optical properties despite the thinner thickness than other reported all-cellulose transparent and hazy paper, we achieved the highest optical haze and transmittance values per unit thickness. We believe that this all-cellulose paper with outstanding optical properties has great potential to be applied to many fields that include flexible devices, environmentally friendly electronics, optoelectronics, and other functional devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.