These results demonstrated that KT application with proper tension to the quadriceps effectively attenuates various types of pain and improves AROM and proprioception in osteoarthritis patients. Thus, KT may be a suitable intervention to improve pain, AROM, and proprioception in patients with osteoarthritis in clinics.
N-Methyl-d-aspartate (NMDA) receptors are thought to play an important role in the processes of central sensitization and pathogenesis of neuropathic pain, particularly after spinal cord injury (SCI). NMDA antagonists effectively reduce neuropathic pain, but serious side effects prevent their use as therapeutic drugs. NMDA NR2B antagonists have been reported to effectively reduce inflammatory and neuropathic pain. In this study, we investigated the effects of NR2B antagonists on neuropathic pain and the expression of NR2B in the spinal cord in 2 SCI models. SCI was induced at T12 by a New York University impactor (contusion) or by sectioning of the lateral half of the spinal cord (hemisection). Ifenprodil (100, 200, 500, 1000nmol) and Ro25-6981 (20, 50, 100, 200nmol) were intrathecally injected and behavioral tests were conducted. Ifenprodil increased the paw withdrawal threshold in both models but also produced mild motor depression at higher doses. Ro25-6981 increased the mechanical nociceptive threshold in a dose-dependent manner without motor depression. NR2B expression was significantly increased on both sides at the spinal segments of L1-2 and L4-5 in the hemisection model but did not change in the contusion model. Increased expression of NR2B in the hemisection model was reduced by intrathecal ifenprodil. These results suggest that intrathecal NMDA NR2B antagonist increased the mechanical nociceptive threshold after SCI without motor depression. A selective subtype of NMDA receptor, such as NR2B, may be a more selective target for pain control because NMDA receptors play a crucial role in the development and maintenance of chronic pain.
BackgroundStroke is characterized by an asymmetrical gait pattern that causes poor stability and reduces overall activity levels. The aim of this study was to investigate the effect of whole-body vibration combined with treadmill training (WBV-TT) on walking performance in patients with chronic stroke.Material/MethodsThirty ambulatory chronic stroke patients were randomly allocated to the WBV-TT group or the treadmill training (TT) group. The participants in the WBV-TT group performed 6 types of exercises on a vibrating platform for 4.5 minutes and then walked on the treadmill for 20 minutes. The participants in the TT group conducted the same exercise on a platform without vibration and then walked on the treadmill in the same manner. The vibration lasted for 45 seconds in each exercise, and the intervention was performed 3 times weekly for 6 weeks. The treadmill walking speed was gradually increased by 5% in both groups. The outcome measures included the temporospatial parameter of gait (GAITRite®) and 6-minute walk test.ResultsThe WBV-TT group showed significant improvements in walking performance with respect to walking speed, cadence, step length, stride length, single-limb support, double-limb support, and 6-minute walk test compared with baseline (p<0.05). Significant improvements were also seen in walking speed, step length, stride length, and double-limb support compared with the TT group (p<0.05).ConclusionsThese findings indicate that WBV-TT is more effective than TT for improving walking performance of patients with chronic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.