The target tracking of nonlinear maneuvering radar in dense clutter environments is still an important but difficult problem to be solved effectively. Traditional solutions often rely on motion models and prior distributions. This paper presents a novel improved architecture of Kalman filter based on a recursive neural network, which combines the sequence learning of recurrent neural networks with the precise prediction of Kalman filter in an end-to-end manner. We employ three LSTM networks to model nonlinear motion equation, motion noise, and measurement noise, respectively, and learn their long-term dependence from a large amount of training data. They are then applied to the prediction and update process of Kalman filter to calculate the estimated target state. Our approach is able to address the tracking problem of nonlinear maneuvering radar target online end-to-end and does not require the motion models and prior distributions. Experimental results show that our method is more effective and faster than the traditional methods and more accurate than the method with LSTM network alone.
To address the issue of low efficiency in source seeking within implicit information fields, this paper proposes an autonomous sourcing method based on a balanced search strategy inspired by biological homing behaviors. At the outset of the research, the task of source seeking boiled down to a multi-objective convergence problem. By utilizing feasibility search behaviors as individual samples in evolutionary population, drawing on the principles of evolutionary algorithms, motion searching was integrated with population evolution to guide carriers towards completing source seeking tasks by solving multi-objective problems. Furthermore, the distribution entropy was also considered to measure the searching bias in the process of source seeking. In combination with the requirements of the source seeking process, a new method for balanced searching was designed. Ultimately, through theoretical analysis and simulation verification, we confirmed the effectiveness and rationality of this proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.