There is no generally accepted picture of where, when, and how the domestic dog originated. Previous studies of mitochondrial DNA (mtDNA) have failed to establish the time and precise place of origin because of lack of phylogenetic resolution in the so far studied control region (CR), and inadequate sampling. We therefore analyzed entire mitochondrial genomes for 169 dogs to obtain maximal phylogenetic resolution and the CR for 1,543 dogs across the Old World for a comprehensive picture of geographical diversity. Hereby, a detailed picture of the origins of the dog can for the first time be suggested. We obtained evidence that the dog has a single origin in time and space and an estimation of the time of origin, number of founders, and approximate region, which also gives potential clues about the human culture involved. The analyses showed that dogs universally share a common homogenous gene pool containing 10 major haplogroups. However, the full range of genetic diversity, all 10 haplogroups, was found only in southeastern Asia south of Yangtze River, and diversity decreased following a gradient across Eurasia, through seven haplogroups in Central China and five in North China and Southwest (SW)Asia, down to only four haplogroups in Europe. The mean sequence distance to ancestral haplotypes indicates an origin 5,400–16,300 years ago (ya) from at least 51 female wolf founders. These results indicate that the domestic dog originated in southern China less than 16,300 ya, from several hundred wolves. The place and time coincide approximately with the origin of rice agriculture, suggesting that the dogs may have originated among sedentary hunter-gatherers or early farmers, and the numerous founders indicate that wolf taming was an important culture trait.
TYK2 is a nonreceptor tyrosine kinase involved in adaptive and innate immune responses. A deactivating coding variant has previously been shown to prevent receptor-stimulated activation of this kinase and provides high protection from several common autoimmune diseases but without immunodeficiency. An agent that recapitulates the phenotype of this deactivating coding variant may therefore represent an important advancement in the treatment of autoimmunity. BMS-986165 is a potent oral agent that similarly blocks receptor-stimulated activation of TYK2 allosterically and with high selectivity and potency afforded through optimized binding to a regulatory domain of the protein. Signaling and functional responses in human TH17, TH1, B cells, and myeloid cells integral to autoimmunity were blocked by BMS-986165, both in vitro and in vivo in a phase 1 clinical trial. BMS-986165 demonstrated robust efficacy, consistent with blockade of multiple autoimmune pathways, in murine models of lupus nephritis and inflammatory bowel disease, supporting its therapeutic potential for multiple immune-mediated diseases.
Colletotrichum interacts with numerous plant species overtly as symptomatic pathogens and cryptically as asymptomatic endophytes. It is not known whether these contrasting ecological modes are optional strategies expressed by individual Colletotrichum species or whether a species' ecology is explicitly pathogenic or endophytic. We explored this question by inferring relationships among 77 C. gloeosporioides s.l. strains isolated from asymptomatic leaves and from anthracnose lesions on leaves and fruits of Theobroma cacao (cacao) and other plants from Panamá.ITS and 5′-tef1 were used to assess diversity and to delineate operational taxonomic units for multilocus phylogenetic analysis. The ITS and 5′-tef1 screens concordantly resolved four strongly supported lineages, clades A-D: Clade A includes the ex type of C.gloeosporioides, clade B includes the ex type ITS sequence of C. boninense, and clades C and D are unidentified. The ITS yielded limited resolution and support within all clades, in particular the C. gloeosporioides clade (A), the focal lineage dealt with in this study.In contrast the 5′-tef1 screen differentiated nine distinctive haplotype subgroups within the C. gloeosporioides clade that were concordant with phylogenetic terminals resolved in a five-locus nuclear phylogeny. Among these were two phylogenetic species associated with symptomatic infections specific to either cacao or mango and five phylogenetic species isolated principally as asymptomatic infections from cacao and other plant hosts. We formally describe two new species, C. tropicale and C. ignotum, that are frequent asymptomatic associates of cacao and other Neotropical plant species, and epitypify C. theobromicola, which is associated with foliar and fruit anthracnose lesions of cacao. Asymptomatic Colletotrichum strains isolated from cacao plants grown in China included six distinct C. gloeosporioides clade taxa, only one of which is known to occur in the Neotropics. (Bailey and Jeger 1992). The genus is the subject of numerous studies that deal primarily with its role as a plant pathogen as summarized in Bailey and Jeger (1992) and Cannon et al. (2008). In addition to its conspicuous ecology as a plant pathogen Colletotrichum is also a ubiquitous asymptomatic foliar endophyte of a diverse spectrum of plant hosts (e.g. Lodge et al. 1996, Cannon and Simmons 2002, Gamboa and Bayman 2001, Lu et al. 2004, Duran et al. 2005, Morakotkarn et al. 2007, Osono 2008. The ecological significance of endophytism is unclear. Although it has been suggested that endophytic fungi might be quiescent saprobes (Petrini et al. 1995, Whalley 1996, latent pathogens (Stone et al. 2000) or mutualists (Herre et al. 2007, specific examples detailing these hypotheses remain scant.It has been shown that particular Colletotrichum endophytes confer protective benefits to cacao hosts by reducing disease incidence and damage caused by other plant pathogens (Arnold et al. 2003, Herre et al. 2007. Mejía et al. (2008) reported the frequent isolation of C. gloeo...
Historical drainage patterns adjacent to the Qinghai-Tibetan Plateau differed markedly from those of today. We examined the relationship between drainage history and geographic patterns of genetic variation in the Yunnan spiny frog, Nanorana yunnanensis, using approximately 981 base pairs of mitochondrial DNA partial sequences from protein-coding genes ND1 and ND2, and intervening areas including complete tRNA(Ile), tRNA(Gln) and tRNA(Met). Two null hypotheses were tested: (i) that genetic patterns do not correspond to the development of drainage systems and (ii) that populations had been stable and not experienced population expansion, bottlenecking and selection. Genealogical analyses identified three, major, well-supported maternal lineages, each of which had two sublineages. These divergent lineages were completely concordant with six geographical regions. Genetic structure and divergence were strongly congruent with historical rather than contemporary drainage patterns. Most lineages and sublineages were formed via population fragmentation during the rearrangement of paleodrainage basins in the Early Pliocene and Early Pleistocene. Sympatric lineages occurred only in localities at the boundaries of major drainages, likely reflecting secondary contact of previously allopatric populations. Extensive population expansion probably occurred early in the Middle Pleistocene accompanying dramatic climatic oscillations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.