Recent years have witnessed a surge of research in all-inorganic perovskite nanomaterials for solar cells and light emitting diodes due to their higher chemical stability compared to their hybrid organic-inorganic counterparts. Herein, by combining material synthesis, characterization, optical measurement, and density functional theory based first principles calculation, a type of all-inorganic perovskite CsPb 2 Br 5 microplate with superior crystallinity, enhanced stability, and tunable optical properties is reported. With a robust band gap of ≈2.44 eV, CsPb 2 Br 5 microplate exhibits low-threshold amplified spontaneous emission under both one-and two-photon excitation, which is related to its unique spatially distinguished valence/conduction band edge states originating from the intrinsic sandwiched structure. These results are expected to shed new light on future design and development of novel perovskite nanomaterials for optoelectronic devices.
A sulfonated thin-film composite (TFC) nanofiltration membrane was fabricated using 2,2'-benzidinedisulfonic acid (BDSA) and trimesoyl chloride (TMC) on a polyether sulfone substrate by conventional interfacial polymerization. Due to a nascent barrier layer with a loose architecture, the obtained TFC-BDSA-0.2 membrane showed an ultrahigh pure water permeability of 48.1 ± 2.1 L m h bar, and a considerably low NaCl retention ability of <1.8% over a concentration range of 10-100 g L. The membrane, which possesses a negatively charged surface, displayed an excellent rejection of over 99% toward Congo red (CR) and allowed the fast fractionation of high-salinity textile wastewater. The prepared membrane required only 3-fold water addition to accomplish the separation of multiple components, whereas the commercial NF270 (Dow) membrane required 4-fold water addition and almost double the length of time. Furthermore, the TFC-BDSA-0.2 membrane was subsequently tested for the dye concentration process. It maintained a high flux of 8.2 L m h bar and a negligible dye loss, even when the concentration factor reached ∼10. Finally, by using a 20% alcohol solution as a back-washing medium, a flux recovery ratio (FRR) of 95.6% was achieved with TFC-BDSA-0.2, and the CR rejection ability remained the same. These results prove the outstanding antifouling and solvent-resistant properties of the membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.