Background
Fructus mume (F. mume) has been used as a traditional treatment for ulcer, cough, and digestive problems for many years in Asian countries. Previous studies have demonstrated that F. mume extracts alleviate cognitive deficits in rats with chronic cerebral hypoperfusion and in mice with scopolamine treatments. The present experiment was conducted to examine the effects of F. mume on cognitive impairments in 5XFAD transgenic mice with five familial Alzheimer’s disease (AD) mutations.Methods
F. mume was administered daily to 5XFAD mice at 12 weeks of age and continued for 90 days. Cognitive function was evaluated using a spatial memory version of the Morris water maze task, the object/location novelty recognition test, and contextual fear conditioning at 24 weeks of age. To elucidate the possible mechanisms underlying the memory improving effects of F. mume in 5XFAD mice, we examined alterations in hippocampal cholinergic function.ResultsVehicle-treated 5XFAD mice exhibited hippocampus-dependent memory impairments compared with non-transgenic littermates, which was reversed in F. mume-treated 5XFAD mice. In addition, reduced hippocampal choline acetyltransferase (ChAT) levels in 5XFAD mice were reversed by F. mume treatment, indicating that F. mume enhances the effects of cholinergic neuronal function.Conclusions
F. mume may have therapeutic effects on cognitive impairments in AD.
Cell-to-cell adhesion is important for maintenance of brain structure and function. Abnormal neuronal cell adhesion and loss of its connectivity are considered a main cause of psychiatric disorders such as major depressive disorder (MDD). Various cell adhesion molecules (CAMs) are involved in neuronal cell adhesions and thereby affect brain functions such as learning and memory, cognitive functions, and psychiatric functions. Compared with other CAMs, neuronal growth regulator 1 (Negr1) has a distinct functioning mechanism in terms of its cross-talk with cytokine receptor signaling. Negr1 is a member of the immunoglobulin LON (IgLON) family of proteins and is involved in neuronal outgrowth, dendritic arborization, and synapse formation. In humans, Negr1 is a risk gene for obesity based on a genome-wide association study. More recently, accumulating evidence supports that it also plays a critical role in psychiatric disorders. In this review, we discuss the recent findings on the role of Negr1 in MDD, focusing on its regulatory mechanism. We also provide evidence of putative involvement of Negr1 in other psychiatric disorders based on the novel behavioral phenotypes of Negr1 knockout mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.