Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.
Considerable evidence suggests that various discrete nuclei within the amygdala complex are critically involved in the assignment of emotional significance or value to events through associative learning. Much of this evidence comes from aversive conditioning procedures. For example, lesions of either basolateral amygdala (ABL) or the central nucleus (CN) interfere with the acquisition or expression of conditioned fear. The present study examined the effects of selective neurotoxic lesions of either ABL or CN on the acquisition of positive incentive value by a conditioned stimulus (CS) with two appetitive Pavlovian conditioning procedures. In second-order conditioning experiments, rats first received light-food pairings intended to endow the light with reinforcing power. The acquired reinforcing power of the light was then measured by examining its ability to serve as a reinforcer for second-order conditioning of a tone when tone-light pairings were given in the absence of food. Acquisition of second-order conditioning was impaired in rats with ABL lesions but not in rats with CN lesions. In reinforcer devaluation procedures, conditioned responding of rats with ABL lesions was insensitive to postconditioning changes in the value of the reinforcer, whereas rats with CN lesions, like normal rats, were able to spontaneously adjust their CRs to the current value of the reinforcer. The results of both test procedures indicate that ABL, but not CN, is part of a system involved in CSs' acquisition of positive incentive value. Together with evidence that identifies a role for CN in certain changes in attentional processing of CSs in conditioning, these results suggest that separate amygdala subsystems contribute to a variety of processes inherent in associative learning. Key words: basolateral amygdala; amygdala central nucleus; second-order conditioning; reinforcer devaluation; classical conditioning; ratsMuch evidence indicates that neural processing in the amygdala complex is important for assigning emotional value or significance to events through associative learning. For example, cues that signal an aversive event elicit freezing and potentiate startle reactivity and produce characteristic autonomic responses in rodents. Discrete lesions or inactivation of basolateral amygdala (ABL) or the central nucleus (CN) produce deficits in the acquisition and/or expression of a range of conditioned fear behaviors (for review, see Davis, 1992;LeDoux, 1992). Similarly, unlike normal rats, rats with ABL lesions typically fail to acquire preferences for environmental locations paired with positively reinforcing events, such as food or certain drug states (Everitt and Robbins, 1992;Everitt et al., 1991;McDonald and White, 1993).Recent research indicates that the amygdala also serves an attentional function in Pavlovian appetitive conditioning. Rats with selective neurotoxic lesions of the CN show a pronounced deficit in the acquisition of conditioned orienting behavior to visual and auditory conditioned stimuli (CSs) paired with...
Stress is a biologically significant factor shown to influence synaptic plasticity and memory functioning in the hippocampus. This study examined the role of the amygdala, a brain structure implicated in coordinating stress behaviors and modulating memory consolidation, in mediating stress effects on hippocampal long-term potentiation (LTP) and memory in rats. Electrolytic lesions of the amygdala effectively blocked the adverse physiological and behavioral effects of restraint and tailshock stress, without impeding the increase in corticosterone secretion to stress. Physiologically, hippocampal slices from stressed animals exhibited impaired LTP relative to slices from unstressed control animals, whereas hippocampal slices from stressed animals with amygdalar lesions exhibited normal LTP. Behaviorally, stressed animals were impaired in retention of a hippocampal-dependent hidden platform version of the Morris water maze task, and this impairment was blocked by amygdalar lesions. In a fixed location-visible platform water maze task that can be acquired by independent hippocampal and nonhippocampal memory systems, stress enhanced the use of nonhippocampal-based memory to acquire the task. These results indicate that an intact amygdala is necessary for the expression of the modulatory effects of stress on hippocampal LTP and memory.
Electrolytic lesions to the amygdala, a limbic structure implicated in stress-related behaviors and memory modulation, have been shown to prevent stress-induced impairments of hippocampal long-term potentiation (LTP) and spatial memory in rats. The present study investigated the role of intrinsic amygdalar neurons in mediating stress effects on the hippocampus by microinfusing the GABA A receptor agonist muscimol into the amygdala and examining stress effects on Schaffer collateral/commissural-CA1 LTP and spatial memory. The critical period of the amygdalar contribution to stress effects on hippocampal functions was determined by applying muscimol either before stress or immediately after stress. Our results indicate that intra-amygdalar muscimol infusions before uncontrollable restrainttailshock stress effectively blocked stress-induced physiological and behavioral effects. Specifically, hippocampal slices prepared from vehicle-infused stressed animals exhibited markedly impaired LTP, whereas slices obtained from muscimol-infused stressed animals demonstrated robust LTP comparable with that of unstressed animals. Correspondingly, vehicle-infused stressed animals displayed impaired spatial memory (on a hidden platform version of the Morris water maze task), whereas muscimol-infused stressed animals revealed unimpaired spatial memory. In contrast to prestress muscimol effects, however, immediate poststress infusions of muscimol into the amygdala failed to interfere with stress impairments of LTP and spatial memory. Together, these results suggest that the amygdalar neuronal activity during stress, but not shortly after stress, is essential for the emergence of stress-induced alterations in hippocampal LTP and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.