A lack of gravity experienced during space flight has been shown to have profound effects on human physiology including muscle atrophy, reductions in bone density and immune function, and endocrine disorders. At present, these physiological changes present major obstacles to long-term space missions. What is not clear is which pathophysiological disruptions reflect changes at the cellular level versus changes that occur due to the impact of weightlessness on the entire body. This review focuses on current research investigating the impact of microgravity at the cellular level including cellular morphology, proliferation, and adhesion. As direct research in space is currently cost prohibitive, we describe here the use of microgravity simulators for studies at the cellular level. Such instruments provide valuable tools for cost-effective research to better discern the impact of weightlessness on cellular function. Despite recent advances in understanding the relationship between extracellular forces and cell behavior, very little is understood about cellular biology and mechanotransduction under microgravity conditions. This review will examine recent insights into the impact of simulated microgravity on cell biology and how this technology may provide new insight into advancing our understanding of mechanically driven biology and disease.
Tearing of the rotator cuff tendon in the shoulder is a significant clinical problem, with large/full-thickness tears present in *22% of the general population and recurrent tear rates postarthroscopic repair being quoted as high as 94%. Tissue-engineered biomaterials are increasingly being investigated as a means to augment rotator cuff repairs, with the aim of inducing host cell responses to increase tendon tissue regeneration. Silk-derived materials are of particular interest due to the high availability, mechanical strength, and biocompatibility of silks. In this study, Spidrex Ò , a novel knitted, non-mulberry silk fibroin scaffold was evaluated in vitro for its potential to improve tendon regeneration. Spidrex was compared with a knitted Bombyx mori silk scaffold, a 3D collagen gel and Fiberwire Ò suture material. Primary human and rat tenocytes successfully adhered to Spidrex and significantly increased in number over a 14 day period ( p < 0.05), as demonstrated by fluorescent calcein-AM staining and alamarBlue Ò assays. A similar growth pattern was observed with human tenocytes cultured on the B. mori scaffold. Morphologically, human tenocytes elongated along the silk fibers of Spidrex, assuming a tenocytic cell shape, and were less circular with a higher aspect ratio compared with human tenocytes cultured on the B. mori silk scaffold and within the collagen gel ( p < 0.05). Gene expression analysis by real-time PCR showed that rat tenocytes cultured on Spidrex had increased expression of tenocyte-related genes such as fibromodullin, scleraxis, and tenomodulin ( p < 0.05). Expression of genes that indicate transdifferentiation toward a chondrocytic or osteoblastic lineage were significantly lower in tenocytes cultured on Spidrex in comparison to the collagen gel ( p < 0.05). Immunogenicity assessment by the maturation of and cytokine release from primary human dendritic cells demonstrated that Spidrex enhanced dendritic cell maturation in a similar manner to the clinically used suture material Fiberwire, and significantly upregulated the release of proinflammatory cytokines ( p < 0.05). This suggests that Spidrex may induce an early immune response postimplantation. While further work is required to determine what effect this immune response has on the tendon healing process, our in vitro data suggests that Spidrex may have the cytocompatibility and bioactivity required to support tendon regeneration in vivo.
A positive association between fat and bone mass is maintained through a network of signaling molecules. Clinical studies found that the circulating levels of adiponectin, a peptide secreted from adipocytes, are inversely related to visceral fat mass and bone mineral density, and it has been suggested that adiponectin contributes to the coupling between fat and bone. Our study tested the hypothesis that adiponectin affects bone tissue by comparing the bone phenotype of wild-type and adiponectin-knockout (APN-KO) female mice between the ages of 8-37 weeks. Using a longitudinal study design, we determined body composition and bone density using dual energy x-ray absorptiometry. In parallel, groups of animals were killed at different ages and bone properties were analyzed by microcomputed tomography, dynamic histomorphometry, 3-point bending test, nanoindentation, and computational modelling. APN-KO mice had reduced body fat and decreased whole-skeleton bone mineral density. Microcomputed tomography analysis identified reduced cortical area fraction and average cortical thickness in APN-KO mice in all the age groups and reduced trabecular bone volume fraction only in young APN-KO mice. There were no major differences in bone strength and material properties between the 2 groups. Taken together, our results demonstrate a positive effect of adiponectin on bone geometry and density in our mouse model. Assuming adiponectin has similar effects in humans, the low circulating levels of adiponectin associated with increased fat mass are unlikely to contribute to the parallel increase in bone mass. Therefore, adiponectin does not appear to play a role in the coupling between fat and bone tissue.
Objective. Monosodium urate (MSU) crystal deposition and gout flares frequently affect osteoarthritic joints. This study was undertaken to examine the effects of human cartilage homogenates on MSU crystallization and MSU crystal-induced inflammation.Methods. Human cartilage homogenates were prepared from macroscopically healthy and macroscopically diseased knee joint samples. Crystallization assays were used to test the effects of cartilage homogenates or individual cartilage factors on MSU crystallization. Changes in urate solubility, crystal nucleation, crystal growth, and total crystal mass were determined. THP-1 cell assays were used to assess cytokine release following culture with MSU crystals grown in the presence or absence of cartilage homogenates or individual proteins.Results. Addition of either 5% or 10% healthy cartilage homogenate increased the total mass of MSU crystals formed and resulted in formation of shorter MSU crystals compared to controls without cartilage homogenate. MSU crystal bows were observed in both the presence and absence of cartilage homogenate; however, bows formed in the presence of cartilage homogenates were significantly shorter than bows formed in their absence. There were no effect differences between macroscopically healthy and macroscopically diseased cartilage homogenates in all assessments. Addition of either type II collagen or albumin also led to the formation of shorter MSU crystals. In THP-1 cell assays, MSU crystals grown with healthy cartilage homogenate increased the release of interleukin-8, whereas MSU crystals grown with type II collagen or albumin had no effect on inflammatory cytokine release.Conclusion. In the presence of elevated urate levels, human cartilage homogenates increase MSU crystal formation and promote the formation of smaller crystals, which have greater inflammatory potential. These processes may contribute to the predilection of osteoarthritic joints to develop gout.
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.