With the exponential growth of Cyber-Physical Systems (CPSs) technologies, the Internet of Things (IoT) infrastructure has evolved from built-in static infrastructure to a flexible structure applicable to various mobile environments. In this Internet of Mobile Things (IoMT) environment, each IoT device could operate simultaneously as a provider and consumer of information, and could provide new services through the exchange of such information. Named Data Networking (NDN), which could request data by content name rather than location (IP address), is suitable for such mobile IoT environments. However, in the current Named Data Networking (NDN) specification, producer mobility is one of the major problems in need of remedy. Previously proposed schemes for producer mobility use an anchor to hide the producer’s movement from consumers. As a result, they require a special anchor node and a signaling procedure to track the current locations of contents. A few anchorless schemes have also been proposed, but they still require mobility signaling and all NDN routers on the signaling path must understand the meaning of the signaling. We therefore propose an anchorless producer mobility scheme for the NDN. This scheme uses a dual-connectivity strategy that can be expressed as a soft handover. Whenever a producer changes its NDN Access Router (NAR), the new mobility link service located on the mobile producer’s old NDN face repairs the old link so that the connectivity with the pNAR can be maintained for a while. The old NDN face is removed after the new location information on the contents of the producer is disseminated over the NDN network by the Named-data Link State Routing Protocol (NLSR) routing protocol at the nNAR. The new mobility link service decouples connection and transaction to hide the collapse of the link. Therefore, the NDN’s mobility procedure could be simplified as the handover is defined as transaction completion as opposed to a breakdown of links. The proposed scheme prevents the routing information from being abruptly outdated due to producer mobility. Our simulation results show seamless handover when the producer changes its default access router.
This study examined the charge carrier photogeneration and hole transport properties of blends of poly (9-vinylcarbazole) (PVK), a π-conjugated polymer, with different weight proportions (0~29.4 wt%) of (PEA)-VOPO 4 ·H 2 O (PEA: phenethylammonium cation), a novel organic-inorganic hybrid material, using IR, UV-Vis, and energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), steady state photocurrent (SSPC) measurement, and atomic force microscopy (AFM). The SSPC measurements showed that the photocurrent of PVK was reduced by approximately three orders of magnitude by the incorporation of a small amount (~12.5 wt%) of (PEA) VOPO 4 ·H 2 O, suggesting that hole transport occurred through the PVK carbazole groups, whereas a reverse trend was observed at high proportions (>12.5 wt%) of (PEA)VOPO 4 ·H 2 O, suggesting that transport occurred via (PEA)VOPO 4 ·H 2 O molecules. The transition to a trap-controlled hopping mechanism was explained by the difference in ionization potential and electron affinity of the two compounds as well as the formation of charge percolation threshold pathways.
Named Data Networking (NDN) supports the consumer mobility service by letting a consumer reissue an interest. This method is straightforward, but it may cause several drawbacks, including unnecessary handover overhead and long handover delay. We concentrate on the NDN communication model in which the pair of an interest and a data packet is considered a single communication working set (i.e., transaction unit). In this respect, reissuing an interest means creating a new transaction due to the connection damaged by the movement of a consumer. It makes all states of the current transaction useless, and this is where the drawbacks arise. In order to enhance the consumer mobility service, we propose Mobility Link Service (MLS) operated in NDN face which is responsible for management of a connection for a transaction. MLS reuses the existing states of a transaction by establishing a connection for the transaction instead of creating a new one. In addition, MLS in NDN face makes consumer mobility service transparent to the NDN forwarding plane. Therefore, the consumer mobility service and the NDN architecture can evolve independently. The performance evaluation shows that MLS reduces the amount of retransmitted data and handover latency compared with the existing NDN mobility solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.