To measure the effect of septoplasty on the volume of inferior turbinate in patients with a deviated nasal septum. Design: In this retrospective analysis, patients who underwent septoplasty without turbinate surgery from May 1, 2003, through April 30, 2006, were studied. The thicknesses and cross-sectional areas of mucosa and conchal bones were measured with computed tomography before the operations and at least 1 year after the operations. Setting: University hospital. Patients: A total of 20 patients who presented with a chief concern of nasal obstruction. Main Outcome Measures: The thicknesses of the medial mucosa, bone, and lateral mucosa and the cross-sectional area of turbinate before and after septoplasty were compared using the Wilcoxon signed rank test. P Ͻ.05 was considered statistically significant. Results: The medial mucosa and cross-sectional area of the inferior turbinate on the concave side of the septum were significantly decreased by septoplasty (both, P=.01), and the medial mucosa and cross-sectional area of the inferior turbinate on the convex side of the septum were significantly increased by septoplasty (P=.01). The thicknesses and cross-sectional areas of the conchal bone on the concave and convex sides of the septum were not affected by septoplasty. Conclusion: After septoplasty, inferior turbinate hypertrophy, especially in the medial mucosa, may reverse.
SUMMARY The cochlea possesses a robust circadian clock machinery that regulates auditory function. How the cochlear clock is influenced by the circadian system remains unknown. Here we show that cochlear rhythms are system-driven and require local Bmal1 as well as central input from the suprachiasmatic nuclei (SCN). SCN ablations disrupted the circadian expression of the core clock genes in the cochlea. Since the circadian secretion of glucocorticoids (GCs) is controlled by the SCN and that GCs are known to modulate auditory function, we assessed their influence on circadian gene expression. Removal of circulating GCs by adrenalectomy (ADX) did not have a major impact on core clock gene expression in the cochlea. Rather it abolished the transcription of clock-controlled genes involved in inflammation. ADX abolished the known differential auditory sensitivity to day and night noise trauma and prevented the induction of GABA-ergic and glutamate receptors mRNA transcripts. However, these improvements were unrelated to changes at the synaptic level suggesting other cochlear functions may be involved. Due to this circadian regulation of noise sensitivity by GCs, we evaluated the actions of the synthetic glucocorticoid dexamethasone (DEX) at different times of the day. DEX was effective in protecting from acute noise trauma only when administered during daytime, when circulating glucocorticoids are low, indicating that chronopharmacological approaches are important for obtaining optimal treatment strategies for hearing loss. GCs appear as a major regulator of the differential sensitivity to day or night noise trauma, a mechanism likely involving the circadian control of inflammatory responses.
The effect of exercise on expression of myokine and angiogenesis mRNA in skeletal muscle of high fat diet induced obese rat. JENB., Vol. 19, No. 2, pp.91-98, 2015 [Purpose] The purpose of this study was to investigate the effect of regular treadmill exercise on the mRNA expressions of myokines and angiogenesis factors in the skeletal muscle of obese rats.[Methods] Thirty two male Sprague-Dawley rats (4weeks old) were divided into the CO (control) and HF (high fat diet) groups. Obesity was induced in the HF group by consumption of 45% high-fat diet for 15 weeks. These groups were further subdivided into training groups (COT and HFT); the training groups conducted moderate intensity treadmill training for 8 weeks. Soleus muscles were excised and analyzed by real-time quantitative PCR.[Results] mRNA expression of myokines, such as PGC-1α, IL-6, and IL-15, in the COT and HFT groups (which conducted regular exercise), were higher as compared with the CO and HF groups (p < 0.05). Also, the levels in the HF group were significantly lower when compared with CO group (p < 0.05). Expression of angiogenesis mRNA, namely mTOR, VEGF, and FLT1, were significantly lower in the HF group, as compared to the CO group (p < 0.05). In addition, COT group had a higher expression of mTORC1, mTORC2, VEGF and FLT mRNA, than the CO group (p < 0.05); the HFT group also had higher expressions of mTOR, VEGF and FLT1 mRNA than the HF group (p < 0.05).[Conclusion] These results indicate that mRNA expression of myokines was increased through the activity of muscle contraction, and it also promoted the mRNA expression of angiogenesis due to activation of mTOR. Thus, we conclude that not only under normal health conditions, but in obesity and excess nutritional circumstances also, regular exercise seems to act positively on the glycemic control and insulin sensitivity through the angiogenesis signaling pathway.
[Purpose]The purpose of this study was to investigate the effect of regular treadmill exercise on the mRNA expressions of myokines and angiogenesis factors in the skeletal muscle of obese rats.[Methods]Thirty two male Sprague-Dawley rats (4weeks old) were divided into the CO (control) and HF (high fat diet) groups. Obesity was induced in the HF group by consumption of 45% high-fat diet for 15 weeks. These groups were further subdivided into training groups (COT and HFT); the training groups conducted moderate intensity treadmill training for 8 weeks. Soleus muscles were excised and analyzed by real-time quantitative PCR.[Results]mRNA expression of myokines, such as PGC-1α, IL-6, and IL-15, in the COT and HFT groups (which conducted regular exercise), were higher as compared with the CO and HF groups (p < 0.05). Also, the levels in the HF group were significantly lower when compared with CO group (p < 0.05). Expression of angiogenesis mRNA, namely mTOR, VEGF, and FLT1, were significantly lower in the HF group, as compared to the CO group (p < 0.05). In addition, COT group had a higher expression of mTORC1, mTORC2, VEGF and FLT mRNA, than the CO group (p < 0.05); the HFT group also had higher expressions of mTOR, VEGF and FLT1 mRNA than the HF group (p < 0.05).[Conclusion]These results indicate that mRNA expression of myokines was increased through the activity of muscle contraction, and it also promoted the mRNA expression of angiogenesis due to activation of mTOR. Thus, we conclude that not only under normal health conditions, but in obesity and excess nutritional circumstances also, regular exercise seems to act positively on the glycemic control and insulin sensitivity through the angiogenesis signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.