The present study aimed to investigate the prevalence and clinical consequences of occult intra-operative periprosthetic femoral fractures in total hip arthroplasty (THA). Between 2012 and 2017, a total of 113 primary THAs were enrolled. The mean age of the patients was 66.4 ± 7.6 years. We assessed occult intra-operative periprosthetic femoral fractures with the use of computed tomography (CT) and risk factors, including age, sex, body mass index, diagnosis, stem size, and radiographic parameters of proximal femoral geometry were analyzed. We also assessed the differences in thigh pain and stem subsidence and alignment between the patients with and without occult periprosthetic femoral fracture. Occult intra-operative periprosthetic femoral fractures were found in 13 of 113 hips (11.5%). In 9/13 (69.2%) of occult fractures, fracture lines were started from the region below the tip of the lesser trochanter. Six periprosthetic femoral fractures (5.3%) were found during the operation. Out of the five hips that had detected femoral fractures around the lesser trochanter intra-operatively, four hips (80%) showed concurrent occult fractures on different levels. The female sex (P = .01) and canal filling ratio at 7 cm below the tip of the lesser trochanter (P = .01) were significantly different between the patients with and without occult periprosthetic femoral fracture. The sex was significantly associated with an increased risk in predicting an occult intra-operative periprosthetic femoral fracture (odds ratio of male, 0.25 compared with the female; 95% CI, 0.08–0.85; p = .02). There was a significant difference in the incidence of thigh pain between occult fracture group and non-occult fracture group (P < .05). There were no significant differences in stem subsidence and alignment between the patients with and without occult periprosthetic femoral fracture. All 13 cases of occult intra-operative periprosthetic femoral fractures were healed at the final follow-up. Occult periprosthetic femoral fractures are common during a long, trapezoidal, double-tapered cementless femoral stem fixation in primary THA, that CT scans are helpful to identify them, and that these fractures do not adversely affect the implant’s survival if a rigid fixation of the implants has been achieved.
Nanostructured materials, such as silicon nanowires, quartz nanostructures, and polymer-modified nanostructures, are a promising new class of materials for the capture and enumeration of very rare tumor cells, including circulating tumor cells (CTCs), to examine their biological characteristics in whole blood of cancer patients. These cells can then be used for transplantation, anti-tumor cell therapy, and cell-secreted protein studies. It is believed that 3-dimensional (3D) nanostructured substrates efficiently enhance cell capture yields due to the increased local contacts between the 3D nanostructures and extracellular extensions of the tumor cells. Recent studies have been performed with enhanced cell capture yields thanks to various nanostructured platforms; however, there remains an urgent need both to capture and release viable rare tumor cells for further molecular (i.e., protein) analysis and to develop patient-specific drugs. Here, we first demonstrate that our 3D quartz nanohole array (QNHA) tumor cell capture and release system allows us not only to selectively capture rare tumor cells, but also to release the cells with high capture and release rates. This system was developed using streptavidin (STR)-functionalized QNHA (STR-QNHA) with a microfluidic channel. Our system has ideal cell-separation yields of as high as 85-91% and high release rates of >90% for the BT20 cell line. We suggest that the use of a microfluidic channel technique coupled with a STR-QNHA cell capture and release chip (STR-QNHA cell chip) would be a powerful and simple process to evaluate the capture, enumeration, and release of CTCs from patient whole blood for studying further cell therapy and tumor-cell-secreted molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.