The effects of a porous fence with a nonuniform porosity on flow fields are investigated numerically. First, an experiment with a non-uniform porous fence located in a wind tunnel is performed to obtain a reference data set. Then, a numerical model that utilizes the finite volume scheme with a weakly compressible-flow method to solve the continuity and momentum equations is developed. The numerical simulation is compared to experimental measurements for validation purposes. As a result, the numerical predictions show good agreements with the experimental data. Finally, the numerical investigations of the flow fields around porous fences with various combinations of upper and lower fence porosity are also presented. When the upper porosity is greater than the lower porosity, the Protection Index PI 0.1 , PI 0.3 and PI 0.5 , representing the adverse sheltering effect, decreases compared to that of the uniform porous fence. When the upper porosity is less than the lower porosity, the PI 0.5 increases and the variations of the PI 0.1 and PI 0.3 , depend on the upper porosity, compared to that of the uniform porous fence. The results show that the porous fence with the upper fence porosity ε U 0% and the lower fence porosity ε L 30% gives the best sheltering effect among the porous fences in this study.
Frequent earthquakes, monsoon torrential rains and typhoons cause severe landslides and soil erosion in Taiwan. Hibiscus taiwanensis, Macaranga tanarius, and Mallotus paniculatus are major pioneer tree species appearing on landslide-scarred areas. Thus, these species can be used to restore the self-sustaining native vegetation on forest landslides, to control erosion, and to stabilize slope. However, their growth performance, root traits and biomechanical properties have not been well characterized. In this study, root system and root traits were investigated using the excavation method, and biomechanical tests were performed to determine the uprooting resistance, root tensile strength and Young’s modulus of 1-year-old Hibiscus taiwanensis, Macaranga tanarius, and Mallotus paniculatus seedlings. The results reveal that relative to H. taiwanensis, M. tanarius and M. paniculatus seedlings had significantly larger root collar diameter, longer taproot length, higher root biomass, higher root density, higher root length density, heavier root mass, larger external root surface area, higher root tissue density, larger root volume, longer total root length, and a higher root tip number. Additionally, the height of M. paniculatus seedlings was significantly higher than those of H. taiwanensis and M. tanarius. Furthermore, the uprooting resistance and root tensile strength of M. paniculatus seedlings was significantly higher than those of H. taiwanensis and M. tanarius. Young’s modulus of M. paniculatus and M. tanarius seedlings was also significantly higher than that of H. taiwanensis. These growth characteristics and biomechanical properties demonstrate M. paniculatus and M. tanarius are superior than H. taiwanensis, considering growth performance, root anchorage capability, tensile strength and Young’s modulus. Taken as a whole, the rank order for species selection of these pioneer species for reforestation comes as: M. paniculatus M. tanarius H. taiwanensis. These results, along with knowledge on vegetation dynamics following landslides, allow us to better evaluate the effect of selective removal management of pioneer species on the resilience and sustainability of landslides.
Conventional landslide susceptibility analysis adopted rainfall depth or maximum rainfall intensity as the hydrological factor. However, using these factors cannot delineate temporal variations of landslide in a rainfall event. In the hydrological cycle, runoff quantity reflects rainfall characteristics and surface feature variations. In this study, a rainfall–runoff model was adopted to simulate the runoff produced by rainfall in various periods of a typhoon event. To simplify the number of factors in landslide susceptibility analysis, the runoff depth was used to replace rainfall factors and some topographical factors. The proposed model adopted the upstream area of the Alishan River in southern Taiwan as the study area. The landslide susceptibility analysis of the study area was conducted by using a logistic regression model. The results indicated that the overall accuracy of predicted events exceeded 80%, and the area under the receiver operating characteristic curve (AUC) closed to 0.8. The results revealed that the proposed landslide susceptibility simulation performed favorably in the study area. The proposed model could predict the evolution of landslide susceptibility in various periods of a typhoon and serve as a new reference for landslide hazard prevention.
Rainstorms frequently cause runoff and then the runoff carries large amounts of sediments (sand, clay, and silt) from upstream and deposit them on different landforms (coast, plain, lowland, piedmont, etc.). Afterwards, monsoons and tropical cyclones often induce severe coastal erosion and dust storms in Taiwan. Ipomoea pes-caprae (a vine), Spinifex littoreus (a grass), and Vitex rotundifolia (a shrub) are indigenous foredune pioneer species. These species have the potential to restore coastal dune vegetation by controlling sand erosion and stabilizing sand dunes. However, their growth characteristics, root biomechanical traits, and anti-wind erosion abilities in sand dune environments have not been documented. In this study, the root growth characteristics of these species were examined by careful hand digging. Uprooting test and root tensile test were carried out to measure their mechanical strength, and wind tunnel (6 m × 1 m × 1.3 m, L × W × H) tests were executed to explore the anti-wind erosion ability using one-year-old seedlings. The results of root growth characteristics demonstrate that I. pes-caprae is superior to S. littoreus and V. rotundifolia. Moreover, uprooting resistance of V. rotundifolia seedlings (0.074 ± 0.032 kN) was significantly higher than that of I. pes-caprae (0.039 ± 0.015 kN) and S. littoreus (0.013 ± 0.005 kN). Root tensile strength of S. littoreus (16.68 ± 8.88 MPa) and V. rotundifolia (16.48 ± 4.37 MPa) were significantly higher than that of I. pes-caprae (6.65 ± 2.39 MPa). In addition, wind tunnel tests reveal that sand wind erosion rates for all three species decrease with increasing vegetation cover, but the anti-wind erosion ability of S. littoreus seedlings is significantly higher than I. pes-caprae and V. rotundifolia. Results of root tensile strength and anti-wind erosion ability clearly show that S. littoreus is superior to I. pes-caprae and V. rotundifolia. Taken together, our results suggest that I. pes-caprae and S. littoreus are beneficial for front line mixed planting, while V. rotundifolia is suitable for second line planting in foredune areas. These findings, along with the knowledge on adaption of foredune plants following sand accretion and erosion, provide us critical information for developing the planting strategy of foredune pioneer plants for the sustainable management of coastal foredune ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.