Frequent earthquakes, monsoon torrential rains and typhoons cause severe landslides and soil erosion in Taiwan. Hibiscus taiwanensis, Macaranga tanarius, and Mallotus paniculatus are major pioneer tree species appearing on landslide-scarred areas. Thus, these species can be used to restore the self-sustaining native vegetation on forest landslides, to control erosion, and to stabilize slope. However, their growth performance, root traits and biomechanical properties have not been well characterized. In this study, root system and root traits were investigated using the excavation method, and biomechanical tests were performed to determine the uprooting resistance, root tensile strength and Young’s modulus of 1-year-old Hibiscus taiwanensis, Macaranga tanarius, and Mallotus paniculatus seedlings. The results reveal that relative to H. taiwanensis, M. tanarius and M. paniculatus seedlings had significantly larger root collar diameter, longer taproot length, higher root biomass, higher root density, higher root length density, heavier root mass, larger external root surface area, higher root tissue density, larger root volume, longer total root length, and a higher root tip number. Additionally, the height of M. paniculatus seedlings was significantly higher than those of H. taiwanensis and M. tanarius. Furthermore, the uprooting resistance and root tensile strength of M. paniculatus seedlings was significantly higher than those of H. taiwanensis and M. tanarius. Young’s modulus of M. paniculatus and M. tanarius seedlings was also significantly higher than that of H. taiwanensis. These growth characteristics and biomechanical properties demonstrate M. paniculatus and M. tanarius are superior than H. taiwanensis, considering growth performance, root anchorage capability, tensile strength and Young’s modulus. Taken as a whole, the rank order for species selection of these pioneer species for reforestation comes as: M. paniculatus M. tanarius H. taiwanensis. These results, along with knowledge on vegetation dynamics following landslides, allow us to better evaluate the effect of selective removal management of pioneer species on the resilience and sustainability of landslides.
Rainstorms frequently cause runoff and then the runoff carries large amounts of sediments (sand, clay, and silt) from upstream and deposit them on different landforms (coast, plain, lowland, piedmont, etc.). Afterwards, monsoons and tropical cyclones often induce severe coastal erosion and dust storms in Taiwan. Ipomoea pes-caprae (a vine), Spinifex littoreus (a grass), and Vitex rotundifolia (a shrub) are indigenous foredune pioneer species. These species have the potential to restore coastal dune vegetation by controlling sand erosion and stabilizing sand dunes. However, their growth characteristics, root biomechanical traits, and anti-wind erosion abilities in sand dune environments have not been documented. In this study, the root growth characteristics of these species were examined by careful hand digging. Uprooting test and root tensile test were carried out to measure their mechanical strength, and wind tunnel (6 m × 1 m × 1.3 m, L × W × H) tests were executed to explore the anti-wind erosion ability using one-year-old seedlings. The results of root growth characteristics demonstrate that I. pes-caprae is superior to S. littoreus and V. rotundifolia. Moreover, uprooting resistance of V. rotundifolia seedlings (0.074 ± 0.032 kN) was significantly higher than that of I. pes-caprae (0.039 ± 0.015 kN) and S. littoreus (0.013 ± 0.005 kN). Root tensile strength of S. littoreus (16.68 ± 8.88 MPa) and V. rotundifolia (16.48 ± 4.37 MPa) were significantly higher than that of I. pes-caprae (6.65 ± 2.39 MPa). In addition, wind tunnel tests reveal that sand wind erosion rates for all three species decrease with increasing vegetation cover, but the anti-wind erosion ability of S. littoreus seedlings is significantly higher than I. pes-caprae and V. rotundifolia. Results of root tensile strength and anti-wind erosion ability clearly show that S. littoreus is superior to I. pes-caprae and V. rotundifolia. Taken together, our results suggest that I. pes-caprae and S. littoreus are beneficial for front line mixed planting, while V. rotundifolia is suitable for second line planting in foredune areas. These findings, along with the knowledge on adaption of foredune plants following sand accretion and erosion, provide us critical information for developing the planting strategy of foredune pioneer plants for the sustainable management of coastal foredune ecosystem.
In Taiwan, intensive forest fires frequently cause serious forest degradation, soil erosion and impacts on alpine vegetation. Post-fire succession often induces the substitution of forest by alpine grassland. Alpine silver grass (Miscanthus transmorrisonensis Hay.) and Yushan cane (Yushania niitakayamensis (Hay.) Keng f.) are two main endemic species emerging on post-fire alpine grassland. These species play a major role in the recovery of alpine vegetation and soil conservation of alpine grassland. However, their root traits, root mechanical properties and water erosion-reducing ability have still not been well studied. In the present study, root characteristics were examined using a complete excavation method. Root mechanical characteristics were estimated by utilizing the uprooting test and root tensile test, and hydraulic flume experiments were performed to investigate the water erosion-reducing ability using 8-month-old plants. The results show that the root architecture system of Alpine silver grass belongs to fibrous root system, while the Yushan cane has sympodial-tufted rhizomes with a fibrous root system. Root characteristics reveal that relative to Alpine silver grass, Yushan cane has remarkably larger root collar diameter, higher root biomass, larger root volume, higher root density, and a higher root tissue density. Furthermore, uprooting resistance of Yushan cane is notably higher than that of Alpine silver grass. However, the root tensile strength of Alpine silver grass is significantly higher than that of Yushan cane. Additionally, hydraulic flume experiments reveal that Yushan cane has significantly lower soil detachment rates than that of Alpine silver grass. Collectively, these findings clearly show that Yushan cane has superior root characteristics and water erosion-reducing ability than Alpine silver grass and is thus more suitable for the conservation of alpine grassland.
No abstract
In 2020, the outbreak of COVID-19 epidemic impacted the corn supply.Louis Dreyfus Group, together with Haid Group, conducted corn trading in the mode of "basis pricing+option", and achieved good results. Based on the traditional hedging theory, the basis hedging strategy theory, the basis trade theory, the futures price discovery theory,this paper uses the case study method to illustrate three related questions:How ‘‘basis pricing+option"mode helps Haid Group avoid price risk, and how this mechanism works; Advantages of the mode in risk avoidance for feed enterprises; And an analysis of the risks and defects of the mode. The research finds that the feed enterprises could avoid price risk through the "basis pricing+option" mode by locking the basis in advance to reduce the absolute risk --- calculating the option strike price according to the futures prices on the basis agreement date, setting the highest transaction price --- confirming whether to exercise the option given according to the futures price on the final pricing date. Compared with traditional hedging, the advantage of the basis point price+option model is that feed enterprises and grain traders form long-term cooperation,reduce the trade costs and shorten procurement circle of feed enterprises, and give feed enterprises the initiative and flexibility to choose the purchase price and time.However,the mode would not be perfect, and strict counterparty credit review is required to avoid exposure risk before the final pricing date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.