We investigated the storage lower urinary tract symptoms (LUTS) before and after the first dose of coronavirus disease 2019 (COVID-19) vaccine and the association between pre-vaccinated overactive bladder (OAB) and the worsening of storage LUTS following COVID-19 vaccination. This cross-sectional study in a third-level hospital in Taiwan used the validated pre- and post-vaccinated Overactive Bladder Symptom Score (OABSS). Diagnosis of OAB was made using pre-vaccinated OABSS. The deterioration of storage LUTS was assessed as the increased score of OABSS following vaccination. Of 889 subjects, up to 13.4% experienced worsened storage LUTS after vaccination. OAB was significantly associated with an increased risk of worsening urinary urgency (p = 0.030), frequency (p = 0.027), and seeking medical assistance due to urinary adverse events (p < 0.001) after vaccination. The OAB group faced significantly greater changes in OABSS-urgency (p = 0.003), OABSS-frequency (p = 0.025), and total OABSS (p = 0.014) after vaccination compared to those observed in the non-OAB group. Multivariate regression revealed that pre-vaccinated OAB (p = 0.003) was a risk for the deterioration of storage LUTS. In conclusion, storage LUTS may deteriorate after vaccination. OAB was significantly associated with higher risk and greater changes in worsening storage LUTS. Storage LUTS should be closely monitored after COVID-19 vaccination, especially in those OAB patients.
Timely assessment to accurately prioritize patients is crucial for emergency department (ED) management. Urgent (i.e., level-3, on a 5-level emergency severity index system) patients have become a challenge since under-triage and over-triage often occur. This study was aimed to develop a computational model by artificial intelligence (AI) methodologies to accurately predict urgent patient outcomes using data that are readily available in most ED triage systems. We retrospectively collected data from the ED of a tertiary teaching hospital between January 1, 2015 and December 31, 2019. Eleven variables were used for data analysis and prediction model building, including 1 response, 2 demographic, and 8 clinical variables. A model to predict hospital admission was developed using neural networks and machine learning methodologies. A total of 282,971 samples of urgent (level-3) visits were included in the analysis. Our model achieved a validation area under the curve (AUC) of 0.8004 (95% CI 0.7963–0.8045). The optimal cutoff value identified by Youden's index for determining hospital admission was 0.5517. Using this cutoff value, the sensitivity was 0.6721 (95% CI 0.6624–0.6818), and the specificity was 0.7814 (95% CI 0.7777–0.7851), with a positive predictive value of 0.3660 (95% CI 0.3586–0.3733) and a negative predictive value of 0.9270 (95% CI 0.9244–0.9295). Subgroup analysis revealed that this model performed better in the nontraumatic adult subgroup and achieved a validation AUC of 0.8166 (95% CI 0.8199–0.8212). Our AI model accurately assessed the need for hospitalization for urgent patients, which constituted nearly 70% of ED visits. This model demonstrates the potential for streamlining ED operations using a very limited number of variables that are readily available in most ED triage systems. Subgroup analysis is an important topic for future investigation.
There is a great need for a diagnostic tool using simple clinical information collected from patients to diagnose uric acid (UA) stones in nephrolithiasis. We built a predictive model making use of machine learning (ML) methodologies entering simple parameters easily obtained at the initial clinical visit. Socio-demographic, health, and clinical data from two cohorts (A and B), both diagnosed with nephrolithiasis, one between 2012 and 2016 and the other between June and December 2020, were collected before nephrolithiasis treatment. A ML-based model for predicting UA stones in nephrolithiasis was developed using eight simple parameters—sex, age, gout, diabetes mellitus, body mass index, estimated glomerular filtration rate, bacteriuria, and urine pH. Data from Cohort A were used for model training and validation (ratio 3:2), while data from Cohort B were used only for validation. One hundred and forty-six (13.3%) out of 1098 patients in Cohort A and 3 (4.23%) out of 71 patients in Cohort B had pure UA stones. For Cohort A, our model achieved a validation AUC (area under ROC curve) of 0.842, with 0.8475 sensitivity and 0.748 specificity. For Cohort B, our model achieved 0.936 AUC, with 1.0 sensitivity, and 0.912 specificity. This ML-based model provides a convenient and reliable method for diagnosing urolithiasis. Using only eight readily available clinical parameters, including information about metabolic disorder and obesity, it distinguished pure uric acid stones from other stones before treatment.
Aim of the study Public access to automated external defibrillators (AEDs) plays a key role in increasing survival outcomes for patients with out-of-hospital cardiac arrest. Based on the concept of maximizing “rescue benefit” of AEDs, we aimed to propose a systematic methodology for optimizing the deployment of AEDs, and develop such strategies for long and narrow spaces. Methods We classified the effective coverage of an AED in hot, warm, and cold zones. The AEDs were categorized, according to their accessibility, as fixed, summonable, or patrolling types. The overall rescue benefit of the AEDs were evaluated by the weighted size of their collective hot zones. The optimal strategies for the deployment of AEDs were derived mathematically and numerically verified by computer programs. Results To maximize the overall rescue benefit of the AEDs, the AEDs should avoid overlapping with each other’s coverage as much as possible. Specific rules for optimally deploying one, two, or multiple AEDs, and various types of AEDs are summarized and presented. Conclusion A methodology for assessing the rescue benefit of deployed AEDs was proposed, and deployment strategies for maximizing the rescue benefit of AEDs along a long, narrow, corridor-like, finite space were derived. The strategies are simple and readily implementable. Our methodology can be easily generalized to search for optimal deployment of AEDs in planar areas or three-dimensional spaces.
for 5-year risk, and five rules return the a for 10-year risk based on the manually entered episode number and number of years since the last stone episode. Two rules calculate the 5-and 10-year risk, respectively. We found the EHR-ROKS completely matched webbased calculations after simulations.CONCLUSIONS: Our feasibility implementation indicates that the ROKS nomogram can be integrated into our commercial EHR into existing workflows, improving the likelihood of adoption in future work towards improving provider risk stratification and delivery of appropriate preventive treatment based on risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.