The paper presents the development of an adaptable strut-and-tie model that can be applied to the design or analysis of four-pile caps that support axial compression and biaxial flexure from a supported rectangular column. Due to an absence of relevant test data, the model is validated using non-linear finite element analyses (NLFEA). The results indicate that the use of the proposed model would lead to safe and economical designs. The proposed model can be easily extended to any number of piles, providing a rational procedure for the design of wide range of pile caps.
Purpose -The paper aims to design of dual-mode boost converter with integrated low-voltage control circuit is introduced in this paper. The paper aims to discuss these issues. Design/methodology/approach -The converter is operated either with LC filter or with charge pump circuit by the switch control. The control stage with error amplifier, comparator, and oscillator is designed with the supply voltage of 3.3 V and the operating frequency of 5.5 MHz. The compensator circuit exploits a pole compensation for a stable operation.Findings -The simulation test in 0.35 mm CMOS process shows that the charge pump regulator and DC-DC boost converter are accurately controlled with the variation of number of stages and duty ratio. The output-voltage is obtained to be 6-15 V within the ripple ratio of 5 percent. Maximum power consumption is about 0.65 W. Originality/value -This dual-mode is useful in the converter with a wide load-current variation. The advantage of the dual-mode converter is that it can be used in either high or low load current with a simple switch control. Furthermore, in charge pump regulator, there is no degradation of output voltage because of the feedback control circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.