Rapid processing technologies of perovskite solar cells (PSCs) offer an exciting approach to raise the rate of production. Herein, a rapid microwave‐annealing process (MAP) is reported to replace the traditional hotplate annealing process (HAP) and the processing period of perovskite is reduced to less than 1 min. Benefiting from the penetrability and simultaneity of microwave irradiation, the MAP method can effectively eliminate miscellaneous phases and thus achieve >1 µm large‐size crystal grains in perovskite films. These MAP treated perovskite films exhibit pure crystalline phase, long charge‐carrier lifetime, and low defect density, which can substantially improve the PSC efficiency without requiring an additional enhancer/passivation layer. The inverted planar PSCs present enhanced power conversion efficiency from 18.33% (HAP) to 21.59% (MAP) and good stability of >1000 h lifetime without encapsulation under ambient conditions. In addition, MAP can be applied to a large‐size (10 cm × 10 cm) perovskite film fabrication as well as a broader tolerance in environmental temperature and precursor concentration, making it a reliable method for repeatably practical fabrication of perovskite photovoltaics.
Window glazing plays an essential role to modulate indoor light and heat transmission, which is a prospect to save the energy cost in buildings. The latest photovoltachromic technology has been regarded as one of the most ideal solutions, however, to achieve full-frame size (100% active area) and high-contrast ratio (>30% variable in visible wavelength) for smart window applicability is still a challenge. Here we report a photovoltachromic device combining full-transparent perovskite photovoltaic and ion-gel based electrochromic components in a vertical tandem architecture without any intermediated electrode. Most importantly, by accurately adjusting the halide-exchanging period, this photovoltachromic module can realize a high pristine transmittance up to 76%. Moreover, it possesses excellent colour-rendering index to 96, wide contrast ratio (>30%) on average visible transmittance (400-780 nm), and a self-adaptable transmittance adjustment and control indoor brightness and temperature automatically depending on different solar irradiances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.