As a major public health problem, the prevalence of Acinetobacter baumannii (A. baumannii) infections in hospitals due to the pathogen’s multiple-antibiotic resistance has attracted extensive attention. We previously reported a series of 1,3-diamino-7H-pyrrolo[3,2-f]quinazoline (PQZ) compounds, which were designed by targeting Escherichia coli dihydrofolate reductase (ecDHFR), and exhibited potent antibacterial activities. In the current study, based on our molecular-modeling study, it was proposed that PQZ compounds may function as potent A. baumannii DHFR (abDHFR)-inhibitors as well, which inspired us to consider their anti-A. baumannii abilities. We further found that three PQZ compounds, OYYF-171, -172, and -175, showed significant antibacterial activities against A. baumannii, including multidrug-resistant (MDR) strains, which are significantly stronger than the typical DHFR-inhibitor, trimethoprim (TMP), and superior to, or comparable to, the other tested antibacterial agents belonging to β-lactam, aminoglycoside, and quinolone. The significant synergistic effect between the representative compound OYYF-171 and the dihydropteroate synthase (DHPS)-inhibitor sulfamethoxazole (SMZ) was observed in both the microdilution-checkerboard assay and time-killing assay, which indicated that using SMZ in combination with PQZ compounds could help to reduce the required dosage and forestall resistance. Our study shows that PQZ is a promising scaffold for the further development of folate-metabolism inhibitors against MDR A. baumannii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.