In this paper, we investigate the global stability of quaternion-valued neural networks (QVNNs) with time-varying delays. On one hand, in order to avoid the noncommutativity of quaternion multiplication, the QVNN is decomposed into four real-valued systems based on Hamilton rules: $ij=-ji=k,~jk=-kj=i$ , $ki=-ik=j$ , $i^{2}=j^{2}=k^{2}=ijk=-1$ . With the Lyapunov function method, some criteria are, respectively, presented to ensure the global $\mu $ -stability and power stability of the delayed QVNN. On the other hand, by considering the noncommutativity of quaternion multiplication and time-varying delays, the QVNN is investigated directly by the techniques of the Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) where quaternion self-conjugate matrices and quaternion positive definite matrices are used. Some new sufficient conditions in the form of quaternion-valued LMI are, respectively, established for the global $\mu $ -stability and exponential stability of the considered QVNN. Besides, some assumptions are presented for the two different methods, which can help to choose quaternion-valued activation functions. Finally, two numerical examples are given to show the feasibility and the effectiveness of the main results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.