We propose a novel framework to generate a global texture atlas for a deforming geometry. Our approach distinguishes from prior arts in two aspects. First, instead of generating a texture map for each timestamp to color a dynamic scene, our framework reconstructs a global texture atlas that can be consistently mapped to a deforming object. Second, our approach is based on a single RGB‐D camera, without the need of a multiple‐camera setup surrounding a scene. In our framework, the input is a 3D template model with an RGB‐D image sequence, and geometric warping fields are found using a state‐of‐the‐art non‐rigid registration method [GXW*15] to align the template mesh to noisy and incomplete input depth images. With these warping fields, our multi‐scale approach for texture coordinate optimization generates a sharp and clear texture atlas that is consistent with multiple color observations over time. Our approach is accelerated by graphical hardware and provides a handy configuration to capture a dynamic geometry along with a clean texture atlas. We demonstrate our approach with practical scenarios, particularly human performance capture. We also show that our approach is resilient on misalignment issues caused by imperfect estimation of warping fields and inaccurate camera parameters.
Objective Smart glasses can provide sonographers with real-time ultrasound images. In the present study, we aimed to evaluate the utility of smart-glasses for ultrasound-guided peripheral venous access. Methods In this randomized, crossover-design, simulation study, 12 participants were recruited from the emergency department residents at a university hospital. Each participant attempted ultrasound-guided peripheral venous access on a pediatric phantom at intervals of 5 days with (glasses group) or without (non-glasses group) the use of smart glasses. In the glasses group, participants confirmed the ultrasound image through the lens of the smart glasses. In the nonglasses group, participants confirmed the ultrasound image through the display viewer located next to the phantom. Procedure time was regarded as the primary outcome, while secondary outcomes included the number of head movements for the participant, number of skin punctures, number of needle redirections, and subjective difficulty. Results No significant differences in procedural time were observed between the groups (nonglasses group: median time, 15.5 seconds; interquartile range [IQR], 10.3 to 27.3 seconds; glasses group: median time, 19.0 seconds; IQR, 14.3 to 39.3 seconds; P=0.58). The number of head movements was lower in the glasses group than in the non-glasses group (glasses group: median, 0; IQR, 0 to 0; non-glasses group: median, 4; IQR, 3 to 5; P<0.01). No significant differences in the number of skin punctures or needle restrictions were observed between the groups. Conclusion Our results indicate that smart-glasses may aid in ensuring ultrasound-guided peripheral venous access by reducing head movements.
Although there are still limitations that need to be remedied, the changes to the current emergency medical assistance system are expected to improve the system's response capacity. (Disaster Med Public Health Preparedness. 2017;11:526-530).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.