The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent is the surface-guided Lamb wave (
≲
0.01 Hz), which we observed propagating for four (+three antipodal) passages around the Earth over six days. Based on Lamb wave amplitudes, the climactic Hunga explosion was comparable in size to that of the 1883 Krakatau eruption. The Hunga eruption produced remarkable globally-detected infrasound (0.01–20 Hz), long-range (~10,000 km) audible sound, and ionospheric perturbations. Seismometers worldwide recorded pure seismic and air-to-ground coupled waves. Air-to-sea coupling likely contributed to fast-arriving tsunamis. We highlight exceptional observations of the atmospheric waves.
Locating events with sparse observations is a challenge for which conventional seismic location techniques are not well suited. In particular, Geiger’s method and its variants do not properly capture the full uncertainty in model parameter estimates, which is characterized by the probability density function (PDF). For sparse observations, we show that this PDF can deviate significantly from the ellipsoidal form assumed in conventional methods. Furthermore, we show how combining arrival time and direction-of-arrival constraints—as can be measured by three-component polarization or array methods—can significantly improve the precision, and in some cases reduce bias, in location solutions. This article explores these issues using various types of synthetic and real data (including single-component seismic, three-component seismic, and infrasound).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.