Despite the prevalence of quantitative approaches in applied linguistics (AL) and second language acquisition (SLA) research (Gass, 2009), evidence indicates a need for improvement in analyzing and reporting SLA data (e.g., Larson-Hall & Plonsky, 2015). However, to improve quantitative research, researchers must possess the statistical knowledge necessary to conduct quality research. This study assesses AL and SLA researchers’ knowledge of key statistical concepts on a statistical knowledge test. One hundred and ninety-eight AL and SLA researchers from North America and Europe responded to 26 discipline-specific questions designed to measure participants’ ability to (a) understand basic statistical concepts and procedures, (b) interpret statistical analyses, and (c) critically evaluate statistical information. Results indicate that participants generally understood basic descriptive statistics, but performance on items requiring more advanced statistical knowledge was lower. Quantitative research orientation, number of statistics courses taken, and frequent use of statistics textbooks had positive influences on researchers’ statistical knowledge.
We present a review of second language researchers’ use of cluster analysis, an advanced statistical method still uncommon but increasingly used to identify groups or patterns in a dataset and to examine group differences. After describing key methodological considerations in conducting cluster analysis, we present a methodological synthesis of 65 studies published between 1989 and 2018 that employed cluster analysis. We specifically review the use of cluster analysis for themes of usage and reporting practices. Our findings indicate that hierarchical cluster analysis and K‐means cluster analysis were the most commonly used cluster methods, but the widespread use of these two methods tended not to be accompanied by sound reporting practices, particularly when justifying cluster solutions. In our analysis, we highlight concerns related to reporting and evaluation. For future use and to inform methodological practices in second language research, we briefly report on a sample study of cluster analysis that uses open data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.