The frost damage resistance of blast-furnace slag (BFS) cement is affected by carbonation. Hence, this study investigates the carbonation properties of pastes incorporating BFS with different replacement ratios, such as 15%, 45%, and 65% by weight, and different curing conditions, including air and carbonation. The BFS replacement ratio properties, determined by the Ca/Si ratio of calcium silicate hydrate in the cement paste sample, were experimentally investigated using mercury intrusion porosimetry, X-ray diffraction, and thermal analysis. The experimental investigation of the pore structure revealed that total porosity decreased after carbonation. In addition, the porosity decreased at a higher rate as the BFS replacement rate increased. Results obtained from this study show that the chemical change led to the higher replacement rate of BFS, which produced a higher amount of vaterite. In addition, the lower the Ca/Si ratio, the higher the amount of calcium carbonate originating from calcium silicate hydrate rather than from calcium hydroxide. As a result of the pore structure change, the number of ink-bottle pores was remarkably reduced by carbonation. Comparing the pore structure change in air-cured and carbonation test specimens, it was found that as the replacement rate of BFS increased, the number of pores with a diameter of 100 nm or more also increased. The higher the replacement rate of BFS, the higher the amount of calcium carbonate produced compared with the amount of calcium hydroxide produced during water curing. Due to the generation of calcium carbonate and the change in pores, the overall number of pores decreased as the amount of calcium carbonate increased.
Neutron diffraction is a noncontact method that can measure the rebar strain inside concrete. In this method, rebar strain and stress are calculated using the diffraction profile of neutrons irradiated during a specific time period. In general, measurement accuracy improves with the length of the measurement time. However, in previous studies, the measurement time was determined empirically, which makes the accuracy and reliability of the measurement results unclear. In this study, the relationship between the measurement time and the measurement standard deviation was examined for reinforced concrete specimens under different conditions. The aim was to clarify the accuracy of the measurement of rebar stress using the neutron diffraction method. It was found that if the optical setup of the neutron diffractometer and the conditions of the specimen are the same, there is a unique relationship between the diffraction intensity and the rebar stress standard deviation. Furthermore, using this unique relationship, this paper proposes a method for determining the measurement time from the allowable accuracy of the rebar stress, which ensures the accuracy of the neutron diffraction method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.