With the increase of Internet visits and connections, it is becoming essential and arduous to protect the networks and different devices of the Internet of Things (IoT) from malicious attacks. The intrusion detection systems (IDSs) based on supervised machine learning (ML) methods require a large number of labeled samples. However, the number of abnormal behaviors is far less than that of normal behaviors, let alone that the shots of malicious behavior samples which can be intercepted as training dataset are actually limited. Consequently, it is a key research topic to conduct the anomaly detection for the small number of abnormal behavior samples. This paper proposes an anomaly detection model with a few abnormal samples to solve the problem in few-shot detection based on convolutional neural networks (CNN) and autoencoder (AE). This model mainly consists of the CNN-based supervised pretraining module and the AE-based data reconstruction module. Only a few abnormal samples are utilized to the pretrain module to build the structure of extracting deep features. The data reconstruction module simply chooses the deep features of normal samples as training data. There also exist some effective attention mechanisms in the pretraining module. Through the pretraining of small samples, the accuracy of abnormal detection is improved compared with merely training normal samples with AE. The simulation results prove that this solution can solve the above problems occurring in network behavior anomaly detection. In comparison to the original AE model and other clustering methods, the proposed model advances the detection results in a visible way.
The emerging mobile edge networks with content caching capability allows end users to receive information from adjacent edge servers directly instead of a centralized data warehouse, thus the network transmission delay and system throughput can be improved significantly. Since the duplicate content transmissions between edge network and remote cloud can be reduced, the appropriate caching strategy can also improve the system energy efficiency of mobile edge networks to a great extent. This paper focuses on how to improve the network energy efficiency and proposes an intelligent caching strategy according to the cached content distribution model for mobile edge networks based on promising deep reinforcement learning algorithm. The deep neural network (DNN) and Q-learning algorithm are combined to design a deep reinforcement learning framework named as the deep-Q neural network (DQN), in which the DNN is adopted to represent the approximation of action-state value function in the Q-learning solution. The parameters iteration strategies in the proposed DQN algorithm were improved through stochastic gradient descent method, so the DQN algorithm could converge to the optimal solution quickly, and the network performance of the content caching policy can be optimized. The simulation results show that the proposed intelligent DQN-based content cache strategy with enough training steps could improve the energy efficiency of the mobile edge networks significantly.
Deep neural networks have achieved state-of-the-art performance on many object recognition tasks, but they are vulnerable to small adversarial perturbations. In this paper, several extensions of generative stochastic networks (GSNs) are proposed to improve the robustness of neural networks to random noise and adversarial perturbations. Experimental results show that compared to normal GSN method, the extensions using adversarial examples, lateral connections and feedforward networks can improve the performance of GSNs by making the models more resistant to overfitting and noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.