With the increase of Internet visits and connections, it is becoming essential and arduous to protect the networks and different devices of the Internet of Things (IoT) from malicious attacks. The intrusion detection systems (IDSs) based on supervised machine learning (ML) methods require a large number of labeled samples. However, the number of abnormal behaviors is far less than that of normal behaviors, let alone that the shots of malicious behavior samples which can be intercepted as training dataset are actually limited. Consequently, it is a key research topic to conduct the anomaly detection for the small number of abnormal behavior samples. This paper proposes an anomaly detection model with a few abnormal samples to solve the problem in few-shot detection based on convolutional neural networks (CNN) and autoencoder (AE). This model mainly consists of the CNN-based supervised pretraining module and the AE-based data reconstruction module. Only a few abnormal samples are utilized to the pretrain module to build the structure of extracting deep features. The data reconstruction module simply chooses the deep features of normal samples as training data. There also exist some effective attention mechanisms in the pretraining module. Through the pretraining of small samples, the accuracy of abnormal detection is improved compared with merely training normal samples with AE. The simulation results prove that this solution can solve the above problems occurring in network behavior anomaly detection. In comparison to the original AE model and other clustering methods, the proposed model advances the detection results in a visible way.
This paper focuses on 6Dof object pose estimation from a single RGB image. We tackle this challenging problem with a two-stage optimization framework. More specifically, we first introduce a translation estimation module to provide an initial translation based on an estimated depth map. Then, a pose regression module combines the ROI (Region of Interest) and the original image to predict the rotation and refine the translation. Compared with previous end-to-end methods that directly predict rotations and translations, our method can utilize depth information as weak guidance and significantly reduce the searching space for the subsequent module. Furthermore, we design a new loss function function for symmetric objects, an approach that has handled such exceptionally difficult cases in prior works. Experiments show that our model achieves state-of-the-art object pose estimation for the YCB- video dataset (Yale-CMU-Berkeley).
Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NAS) has emerged in an attempt to minimize human intervention. We propose an approach for using NAS to search for models suitable for HAR tasks, namely, HARNAS. The multi-objective search algorithm NSGA-II is used as the search strategy of HARNAS. To make a trade-off between the performance and computation speed of a model, the F1 score and the number of floating-point operations (FLOPs) are selected, resulting in a bi-objective problem. However, the computation speed of a model not only depends on the complexity, but is also related to the memory access cost (MAC). Therefore, we expand the bi-objective search to a tri-objective strategy. We use the Opportunity dataset as the basis for most experiments and also evaluate the portability of the model on the UniMiB-SHAR dataset. The experimental results show that HARNAS designed without manual adjustments can achieve better performance than the best model tweaked by humans. HARNAS obtained an F1 score of 92.16% and parameters of 0.32 MB on the Opportunity dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.