With recent advances in the field of Machine Learning (ML), a multitude of problems related to communication systems and networks can be solved with data-driven solutions. Since data in these systems is mostly represented as graphs, Graph-based Neural Networks (GNNs) are a good candidate for solving such problems. These GNNs can be used as a computer network modeling technique to build models that accurately estimate the Key Performance Indicators (KPI) such as delay or jitter in real network scenarios in order to ensure their requirements in terms of service assurance. To build GNN solutions with higher accuracy, low computational resource requirements, and easy deployment of synthetic network training results into real-world networks, it is more than necessary to develop efficient and effective GNN models. This paper presents a GNN model capable of accurately estimating the average delay per flow in networks. By designing scale-independent features and using notions from queuing theory, the proposed model successfully generalizes to large size topologies, routing configurations, and traffic matrices not seen during the training phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.