A series of multiple facial expressions can be temporally perceived as an averaged facial expression in a process known as ensemble perception. This study examined the effect of temporal parameters on the perceived intensity of facial expression in each emotion, and how the effect varies with autistic traits in typically developing people. In the experiment, we presented facial expressions that switched from emotional to neutral expressions, and vice versa, for 3 s. Participants rated the overall perceived intensity of the facial emotions as a whole rather than rating individual items within the set. For the two tasks, a ratio of duration of emotional faces to duration of neutral faces (emotional ratio) and the timing for transitions were manipulated individually. The results showed that the intensity of facial emotion was perceived more strongly when the presentation ratio increased and when the emotional expression was presented last. The effects were different among the emotions (e.g. relatively weak in the anger expression). Moreover, the perceived intensity of angry expressions decreased with autistic traits. These results suggest that the properties and individual differences in the facial ensemble of each emotion affect emotional perceptions.
The spatiotemporal characteristics of basic attention are important for understanding attending behaviours in real-life situations, and they are useful for evaluating the accessibility of visual information. However, although people are encircled by their 360-degree surroundings in real life, no study has addressed the general characteristics of attention to 360-degree surroundings. Here, we conducted an experiment using virtual reality technology to examine the spatiotemporal characteristics of attention in a highly controlled basic visual context consisting of a 360-degree surrounding. We measured response times and gaze patterns during the 360-degree search task and examined the spatial distribution of attention and its temporal variations in a 360-degree environment based on the participants’ physical position. Data were collected from both younger adults and older adults to consider age-related differences. The results showed the fundamental spatiotemporal characteristics of 360-degree attention, which can be used as basic criteria to analyse the structure of exogenous effects on attention in complex 360-degree surroundings in real-life situations. For practical purposes, we created spherical criteria maps of 360-degree attention, which are useful for estimating attending behaviours to 360-degree environmental information or for evaluating visual information design in living environments, workspaces, or other real-life contexts.
A head-mounted display cannot cover an angle of visual field as wide as that of natural view (out-of-view problem). To enhance the visual cognition of an immersive environment, previous studies have developed various guidance designs that visualize the location or direction of items presented in the users’ surroundings. However, two issues regarding the guidance effects remain unresolved: How are the guidance effects different with each guided direction? How much is the cognitive load required by the guidance? To investigate the two issues, we performed a visual search task in an immersive environment and measured the search time of a target and time spent to recognize a guidance design. In this task, participants searched for a target presented on a head-mounted display and reported the target color while using a guidance design. The guidance designs (a moving window, 3D arrow, radiation, spherical gradation, and 3D radar) and target directions were manipulated. The search times showed an interaction effect between guidance designs and guided directions, e.g., the 3D arrow and radar shorten the search time for targets presented at the back of users. The recognition times showed that the participants required short times to recognize the details of the moving window and radiation but long times for the 3D arrow, spherical gradation, and 3D radar. These results suggest that the moving window and radiation are effective with respect to cognitive load, but the 3D arrow and radar are effective for guiding users’ attention to necessary items presented at the out-of-view.
Improvement of switching parameters is reported of bistable polymer dispersed liquid crystal (PDLC) with dual frequency driven liquid crystal in an acrylate polymer matrix. Low frequency voltage pulses result in the transparent state while high frequency pulses return to the opaque state; which is a time useful for practical applications, e.g. still pictures. Both states are maintained even when removing the applied voltage. Repeatedly applying of high frequency voltage pulses recover the device to the initial scattering state with high reproducibility. Polymer content and surface treatment of substrates drastically affect the PDLC droplet formation and also bistability as a result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.