Cancer-associated fibroblasts (CAFs) play crucial roles in tumor progression, given the dependence of cancer cells on stromal support. Therefore, understanding how CAFs communicate with endometrial cancer cell in tumor environment is important for endometrial cancer therapy. Exosomes, which contain proteins and noncoding RNA, are identified as an important mediator of cell-cell communication. However, the function of exosomes in endometrial cancer metastasis remains poorly understood. In the current study we found that CAF-derived exosomes significantly promoted endometrial cancer cell invasion comparing to those from normal fibroblasts (NFs). We identified a significant decrease of miR-148b in CAFs and CAFs-derived exosomes. By exogenously transfect microRNAs, we demonstrated that miR-148b could be transferred from CAFs to endometrial cancer cell through exosomes. In vitro and in vivo studies further revealed that miR-148b functioned as a tumor suppressor by directly binding to its downstream target gene, DNMT1 to suppress endometrial cancer metastasis. In endometrial cancer DNMT1 presented a potential role in enhancing cancer cell metastasis by inducing epithelial-mesenchymal transition (EMT). Therefore, downregulated miR-148b induced EMT of endometrial cancer cell as a result of relieving the suppression of DNMT1. Taken together, these results suggest that CAFs-mediated endometrial cancer progression is partially related to the loss of miR-148b in the exosomes of CAFs and promoting the transfer of stromal cell-derived miR-148b might be a potential treatment to prevent endometrial cancer progression.
Endometrial cancer (EC) is the most common gynecologic malignancy, but the molecular events involved in the development and progression of EC remain unclear. Certain microRNAs (miRNAs) and DICER1 play important roles in cell motility and survival. This study investigated the role of miR-130b and DICER1 in EC. We profiled miR-130b and DICER1 expression in clinical samples explored its relationship with clinical parameters. A luciferase reporter assay assessed the miR-130b targeting potential of DICER1. We show both in vitro and in vivo that miR-130b overexpression along with DICER1 dysfunction leads to tumor aggression and miRNA synthesis abnormalities that are related to cancer hallmarks through DICER1-miRNAs axis modulation. We also identify the mechanism related to this potential tumor predisposing phenotype: miR-130b and loss of DICER1 induced abnormal expression of EMT-related genes, which constitutes a loop regulation of the miR-130b-DICER1-EMT axis.
Colony stimulating factor 1 receptor (CSF-1R) regulates the monocyte/ macrophage system, which is an essential component of cancer development. Therefore, CSF-1R might be an effective target for anti-cancer therapy. The overexpression of transforming growth factor (TGF)-β stimulated clone-22 (TSC-22) inhibits cancer cell proliferation and induces apoptosis, and TSC-22 is emerging as a key factor in tumorigenesis. In this study, we discovered CSF-1R as a new interacting partner of TSC-22 and identified its elevated expression in cervical cancer cells. In particular, we found that TSC-22 interacted with the intracellular tyrosine kinase insert domain (539-749) of CSF-1R, which activates the AKT and ERK signaling pathways. This binding blocked AKT and ERK signaling, thereby suppressing the transcriptional activity of NF-κB. The overexpression of TSC-22 significantly decreased CSF-1R protein levels, affecting their autocrine loop. TSC-22 injected into a xenograft mouse model of human cervical cancer markedly inhibited tumor growth. The reduction of CSF-1R protein significantly suppresses cervical cancer cell proliferation and motility and induces apoptotic cell death. This association between TSC-22 and CSF-1R could be used as a novel therapeutic target and prognostic marker for cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.