Abstract:We extend the holographic construction of [1] from AdS 3 to higher dimensions. In particular, we show that the Bekenstein-Hawking entropy of codimension-two surfaces in the bulk with planar symmetry can be evaluated in terms of the 'differential entropy' in the boundary theory. The differential entropy is a certain quantity constructed from the entanglement entropies associated with a family of regions covering a Cauchy surface in the boundary geometry. We demonstrate that a similar construction based on causal holographic information fails in higher dimensions, as it typically yields divergent results. We also show that our construction extends to holographic backgrounds other than AdS spacetime and can accommodate Lovelock theories of higher curvature gravity.
Abstract:We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.
Recently, a new construction for complete loop integrands of massless field theories has been proposed, with on-shell tree-level amplitudes delicately incorporated into its algorithm. This new approach reinterprets integrands in a novel form, namely the Q-cut representation. In this paper, by deriving one-loop integrands as examples, we elaborate in details the technique of this new representation, e.g., the summation over all possible Q-cuts as well as helicity states for the non-scalar internal particle in the loop. Moreover, we show that the integrand in the Q-cut representation naturally reduces to the integrand in the traditional unitarity cut method for each given cut channel, providing a cross-check for the new approach.
In this paper, we propose a new algorithm to systematically determine the missing boundary contributions, when one uses the BCFW on-shell recursion relation to calculate tree amplitudes for general quantum field theories. After an instruction of the algorithm, we will use several examples to demonstrate its application, including amplitudes of color-ordered φ 4 theory, Yang-Mills theory, Einstein-Maxwell theory and color-ordered Yukawa theory with φ 4 interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.