Abstract:We evaluate the full time dependence of holographic complexity in various eternal black hole backgrounds using both the complexity=action (CA) and the complexity=volume (CV) conjectures. We conclude using the CV conjecture that the rate of change of complexity is a monotonically increasing function of time, which saturates from below to a positive constant in the late time limit. Using the CA conjecture for uncharged black holes, the holographic complexity remains constant for an initial period, then briefly decreases but quickly begins to increase. As observed previously, at late times, the rate of growth of the complexity approaches a constant, which may be associated with Lloyd's bound on the rate of computation. However, we find that this late time limit is approached from above, thus violating the bound. For either conjecture, we find that the late time limit for the rate of change of complexity is saturated at times of the order of the inverse temperature. Adding a charge to the eternal black holes washes out the early time behaviour, i.e. complexity immediately begins increasing with sufficient charge, but the late time behaviour is essentially the same as in the neutral case. We also evaluate the complexity of formation for charged black holes and find that it is divergent for extremal black holes, implying that the states at finite chemical potential and zero temperature are infinitely more complex than their finite temperature counterparts.
Abstract:We extend the holographic construction of [1] from AdS 3 to higher dimensions. In particular, we show that the Bekenstein-Hawking entropy of codimension-two surfaces in the bulk with planar symmetry can be evaluated in terms of the 'differential entropy' in the boundary theory. The differential entropy is a certain quantity constructed from the entanglement entropies associated with a family of regions covering a Cauchy surface in the boundary geometry. We demonstrate that a similar construction based on causal holographic information fails in higher dimensions, as it typically yields divergent results. We also show that our construction extends to holographic backgrounds other than AdS spacetime and can accommodate Lovelock theories of higher curvature gravity.
We construct supersymmetric gauge theories on some curved manifolds with boundaries.Our examples include a part of three-sphere and a part of two-sphere. We concentrate on Dirichlet boundary conditions. For these theories on the manifolds with the boundaries, we compute the partition functions and the Wilson loops exactly using the localization technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.