The repair of bone defects in the geriatric population remains a challenge for modern medicine. Transplantation of bone marrow mesenchymal stem cells (BMSCs) combined with or without biomaterials has been a promising approach to bone restoration and regeneration. Typically, the transplanted BMSCs are cultured under normoxic conditions (21% O2 and 10% serum medium) in vitro. However, the micro-environment of bone defect area is much more severe, in which lower physiological oxygen tension (<1%) and tissue ischemia were present. Therefore, how to improve the survival rate and osteogenesis of transplanted BMSCs at the low oxygenic and ischemic region in vivo is critical. Hypoxia inducible factor-1α (HIF-1α) plays an important role in the tolerance, angiogenesis and osteogenesis of BMSCs during bone regeneration after transplantation. Previous studies have demonstrated that Dimethyloxaloylglycine (DMOG) improves the angiogenic activity of BMSCs. Typically, angiogenesis and osteogenesis are coupled with each other. Therefore, we detected that hypoxia preconditioned BMSCs with the combined treatment of 1% O2 and 0.5mM DMOG showing up-regulation of Hif-1α could enhance the survival rate of BMSCs under severe condition (serum-free medium and 1% O2) in vitro and enhances the angiogenesis and osteogenesis potential of BMSCs under 1% O2 microenvironment in vitro. The hypoxia preconditioned BMSCs were transplanted into critical-sized mandible defects in aged SD rats to test the effectiveness of hypoxic preconditioning approach. We found that hypoxia preconditioned BMSCs improved the repair of critical-sized mandible defects in vivo. These data showed that hypoxia preconditioned BMSCs with the up-regulation of Hif-1α have the potential of enhancing the bone healing process in geriatric individuals.
Painful diabetic neuropathy (PDN) is a common and troublesome diabetes complication. Protein kinase C (PKC)-mediated dorsal root ganglia (DRG) P2X3 receptor upregulation is one important mechanism underlying PDN. Accumulating evidence demonstrated that electroacupuncture (EA) at low frequency could effectively attenuate neuropathic pain. Our previous study showed that 2-Hz EA could relieve pain well in PDN. The study aimed to investigate whether 2-Hz EA relieves pain in PDN through suppressing PKC-mediated DRG P2X3 receptor upregulation. A 7-week feeding of high-fat and high-sugar diet plus a single injection of streptozotocin (STZ) in a dose of 35 mg/kg after a 5-week feeding of the diet successfully induced type 2 PDN in rats as revealed by the elevated body weight, fasting blood glucose, fasting insulin and insulin resistance, and the reduced paw withdrawal threshold (PWT), as well as the destructive ultrastructural change of sciatic nerve. DRG plasma membrane P2X3 receptor level and DRG PKC expression were elevated. Two-hertz EA failed to improve peripheral neuropathy; however, it reduced PWT, DRG plasma membrane P2X3 receptor level, and DRG PKC expression in PDN rats. Intraperitoneal administration of P2X3 receptor agonist αβ-meATP or PKC activator phorbol 12-myristate 13-acetate (PMA) blocked 2-Hz EA analgesia. Furthermore, PMA administration increased DRG plasma membrane P2X3 receptor level in PDN rats subject to 2-Hz EA treatment. These findings together indicated that the analgesic effect of EA in PDN is mediated by suppressing PKCdependent membrane P2X3 upregulation in DRG. EA at low frequency is a valuable approach for PDN control.
Elastin-like proteins (ELPs) modeled after tropoelastin are favored in the development of biomimetic matrices due to their biocompatibility and the possibility to precisely control their environmental responsiveness, mechanical properties, and fate within the cells by recombinant DNA technology-mediated design at the gene level. However, a basic prerequisite in the use of ELPs as cell culture matrices is the presence of a biofunctionality that can induce adhesion-mediated signaling pathways. To activate fibronectin-integrin signaling events from a cell-matrix interface and direct cell survival and proliferation, we biosynthesized a modular ELP, represented as TGPG[VGRGD(VGVPG)₆]₂₀ WPC, consisting of alternating elastic (VGVPG)₆structural domains and cell-binding VGRGD motifs that are intended to emulate various aspects of extracellular matrix proteins. The inverse transition curves of [VGRGD(VGVPG)₆]₂₀ and (VGVPG)₁₄₀ overlapped with each other, indicating that one VGRGD sequence fused with six elastic pentapeptides did not disturb the thermal sensitivity of [VGRGD(VGVPG)₆]₂₀. The cell adhesion activity of [VGRGD(VGVPG)₆]₂₀ toward HEK293 fibroblasts and N2A neuroblasts was similar to that of native fibronectin. Upon contact with [VGRGD(VGVPG)₆]₂₀, the fibroblasts exhibited a flattened polygonal morphology, and the neuroblasts synthesized new DNA and proliferated. On the basis of these physiological changes, we concluded that RGD-functionalized ELP triggers the activation of signaling cascades within cells and can be used as an elastin-like matrix for mammalian cell culture.
The pain-depression dyad is becoming widespread in the clinic and is attracting increasing attention. A previous study by our group found that 100-Hz electro-acupuncture (EA), but not 2-, 50- and 2/100-Hz EA, was effective against the reserpine-induced pain-depression dyad. This finding is in contrast to the fact that low-frequency EA is commonly used to treat supraspinal-originating diseases. The present study aimed to investigate the mechanism underlying the effects of 100-Hz EA on the pain-depression dyad. Repeated reserpine injection was found to induce allodynia and depressive behaviors in rats. It decreased 5-hydroxytryptamine (5-HT) levels and immunoreactive expressions in the dorsal raphe nucleus (DRN). 100-Hz EA alleviated the pain-depression dyad and upregulated 5-HT in the DRN of reserpine-injected rats. Intracerebroventricular injection of para-chlorophenylalanine, an inhibitor of 5-HT resynthesis, suppressed the upregulation of 5-HT in the DRN by 100-Hz EA and partially counteracted the analgesic and anti-depressive effects of 100-Hz EA. The present study was the first to demonstrate that 5-HT in the DRN is involved in mediating the analgesic and anti-depressive effects of 100-Hz EA on the pain-depression dyad. This finding provided a scientific basis for high-frequency EA as a potential treatment for the pain-depression dyad.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.