We systematically discussed the principle of the dual-comb ranging system and built a theoretical model. To correct the phase distortion caused by femtosecond frequency comb noise, a correction approach is proposed and numerical simulations are conducted subsequently. In the simulations, the performance of the method under noise of repetition rate and offset frequency is analyzed respectively. The results indicate that ranging accuracy can be effectively improved by the method. It is verified by the experiments.
In frequency-sweep polarization-modulation ranging, distance is determined by the frequency of modulated waves and the corresponding wavelength multiple when emitted and returned waves are in phase. However, measurement of the frequency and the wavelength multiple is affected by thermally induced phase delay of the polarized wave. In this article we systematically discuss the principle of the ranging method and analyze the influences of thermally induced phase delay. New approaches to measurement are proposed to eliminate the impact on frequency and the wavelength multiple. Theoretical analysis and experimental results proved the efficiency and applicability of the methods.
High-aspect-ratio structures have become increasingly important in MEMS devices. In situ, real-time critical dimension and depth measurement for high-aspect-ratio structures is critical for optimizing the deep etching process. Through-focus scanning optical microscopy (TSOM) is a high-throughput and inexpensive optical measurement method for critical dimension and depth measurement. Thus far, TSOM has only been used to measure targets with dimension of 1 μm or less, which is far from sufficient for MEMS. Deep learning is a powerful tool that improves the TSOM performance by taking advantage of additional intensity information. In this work, we propose a convolutional neural network model-based TSOM method for measuring individual high-aspect-ratio trenches on silicon with width up to 30 μm and depth up to 440 μm. Experimental demonstrations are conducted and the results show that the proposed method is suitable for measuring the width and depth of high-aspect-ratio trenches with a standard deviation and error of approximately a hundred nanometers or less. The proposed method can be applied to the semiconductor field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.