Dickkopf-1 (DKK1) is an inhibitor of Wnt/β-catenin signaling that is overexpressed in most lung and esophageal cancers. Here, we show its utility as a serum biomarker for a wide range of human cancers, and we offer evidence favoring the potential application of anti-DKK1 antibodies for cancer treatment. Using an original ELISA system, high levels of DKK1 protein were found in serologic samples from 906 patients with cancers of the pancreas, stomach, liver, bile duct, breast, and cervix, which also showed elevated expression levels of DKK1. Additionally, anti-DKK1 antibody inhibited the invasive activity and the growth of cancer cells in vitro and suppressed the growth of engrafted tumors in vivo. Tumor tissues treated with anti-DKK1 displayed significant fibrotic changes and a decrease in viable cancer cells without apparent toxicity in mice. Our findings suggest DKK1 as a serum biomarker for screening against a variety of cancers, and anti-DKK1 antibodies as potential theranostic tools for diagnosis and treatment of cancer. Cancer Res; 70(13); 5326-36. ©2010 AACR.
Background:Lung cancer is the leading cause of cancer deaths worldwide. As the sensitivity and specificity of current diagnostic markers are not perfect, we examined whether ubiquitin-like with PHD and ring finger domains 1 (UHRF1), which is overexpressed in various cancers but not yet examined in lung cancer in large scale, can be a novel diagnostic marker of lung cancer.Methods:Immunohistochemical analysis using surgical specimens obtained from 56 US and 322 Japanese patients with lung cancer was performed.Results:The UHRF1 was stained specifically in the nuclei of cancer cells, but not in the other cells. The UHRF1 expression was observed in all histological types of lung cancer, especially in non-adenocarcinomas (non-ADCs), both in the US and Japanese cases. In 322 Japanese non-small cell lung cancer (NSCLC) cases, UHRF1 expression was associated with the histological type (higher in non-ADCs; P<0.00001), gender (higher in male; P=0.00082), smoking (higher in smokers; P=0.00004), pT factor (higher in advanced stage; P=0.00010), and pN factor (higher in cancers with metastasis in regional lymph nodes; P=0.00018). The UHRF1 expression was also associated with poor prognosis for NSCLC patients (P=0.0364). Although UHRF1 overexpression was associated with these malignant indicators, UHRF1 was detectable in half of lung cancer patients in an early pathological stage.Conclusion:The UHRF1 is overexpressed in various types of lung cancer from early pathological stage. Therefore, detection of UHRF1 expression in tissue specimens by immunohistochemistry can be useful for diagnosis of lung cancer in all pathological stages.
We analyzed the gene expression profiles of clinical lung carcinomas using a cDNA microarray containing 27,648 genes or expressed sequence tags, and identified CDCA5 (cell division cycle associated 5) to be upregulated in the majority of lung cancers. Tumor tissue microarray analysis of 262 non-small cell lung cancer patients revealed that CDCA5 positivity was an independent prognostic factor for lung cancer patients. Suppression of CDCA5 expression with siRNAs inhibited the growth of lung cancer cells; concordantly, induction of exogenous expression of CDCA5 conferred growth-promoting activity in mammalian cells. We also found that extracellular signal-regulated kinase (ERK) kinase phosphorylated CDCA5 at Ser79 and Ser209 in vivo. Exogenous expression of phospho-mimicking CDCA5 protein whose Ser209 residue was replaced with glutamine acid further enhanced the growth of cancer cells. In addition, functional inhibition of the interaction between CDCA5 and ERK kinase by a cell-permeable peptide corresponding to a 20-amino-acid sequence part of CDCA5, which included the Ser209 phosphorylation site by ERK, significantly reduced phosphorylation of CDCA5 and resulted in growth suppression of lung cancer cells. Our data suggest that transactivation of CDCA5 and its phosphorylation at Ser209 by ERK play an important role in lung cancer proliferation, and that the selective suppression of the ERK-CDCA5 pathway could be a promising strategy for cancer therapy.Cancer Res; 70(13); 5337-47. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.