The present results demonstrate that a sufficient posterior shift of the spinal cord and neurologic improvement will not be obtained after posterior decompression surgery in the K-line (-) group. Our new index, the K-line, is a simple and practical tool for making decisions regarding the surgical approach for cervical OPLL patients.
These results indicate that intravenous administration of G-CSF (10 μg/kg/day) for 5 days is essentially safe, and suggest that some neurological recovery may occur in most patients. We suggest that G-CSF administration could be therapeutic for patients with acute SCI.
BackgroundGranulocyte colony-stimulating factor (G-CSF) is a protein that stimulates differentiation, proliferation, and survival of cells in the granulocytic lineage. Recently, a neuroprotective effect of G-CSF was reported in a model of cerebral infarction and we previously reported the same effect in studies of murine spinal cord injury (SCI). The aim of the present study was to elucidate the potential therapeutic effect of G-CSF for SCI in rats.MethodsAdult female Sprague-Dawley rats were used in the present study. Contusive SCI was introduced using the Infinite Horizon Impactor (magnitude: 200 kilodyne). Recombinant human G-CSF (15.0 µg/kg) was administered by tail vein injection at 1 h after surgery and daily the next four days. The vehicle control rats received equal volumes of normal saline at the same time points.ResultsUsing a contusive SCI model to examine the neuroprotective potential of G-CSF, we found that G-CSF suppressed the expression of pro-inflammatory cytokine (IL-1 beta and TNF- alpha) in mRNA and protein levels. Histological assessment with luxol fast blue staining revealed that the area of white matter spared in the injured spinal cord was significantly larger in G-CSF-treated rats. Immunohistochemical analysis showed that G-CSF promoted up-regulation of anti-apoptotic protein Bcl-Xl on oligpodendrocytes and suppressed apoptosis of oligodendrocytes after SCI. Moreover, administration of G-CSF promoted better functional recovery of hind limbs.ConclusionsG-CSF protects oligodendrocyte from SCI-induced cell death via the suppression of inflammatory cytokines and up-regulation of anti-apoptotic protein. As a result, G-CSF attenuates white matter loss and promotes hindlimb functional recovery.
ObjectGranulocyte colony-stimulating factor (G-CSF) has neuroprotective effects on the CNS. The authors have previously demonstrated that G-CSF also exerts neuroprotective effects in experimental spinal cord injury (SCI) by enhancing migration of bone marrow–derived cells into the damaged spinal cord, increasing glial differentiation of bone marrow–derived cells, enhancing antiapoptotic effects on both neurons and oligodendrocytes, and by reducing demyelination and expression of inflammatory cytokines. Because the degree of angiogenesis in the subacute phase after SCI correlates with regenerative responses, it is possible that G-CSF's neuroprotective effects after SCI are due to enhancement of angiogenesis. The aim of this study was to assess the effects of G-CSF on the vascular system after SCI.MethodsA contusive SCI rat model was used and the animals were randomly allocated to either a G-CSF–treated group or a control group. Integrity of the blood–spinal cord barrier was evaluated by measuring the degree of edema in the cord and the volume of extravasation. For histological evaluation, cryosections were immunostained with anti–von Willebrand factor and the number of vessels was counted to assess revascularization. Real-time reverse transcriptase polymerase chain reaction was performed to assess expression of angiogenic cytokines, and recovery of motor function was assessed with function tests.ResultsIn the G-CSF–treated rats, the total number of vessels with a diameter > 20 μm was significantly larger and expression of angiogenic cytokines was significantly higher than those in the control group. The G-CSF–treated group showed significantly greater recovery of hindlimb function than the control group.ConclusionsThese results suggest that G-CSF exerts neuroprotective effects via promotion of angiogenesis after SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.