Shoot branching is a major determinant of plant architecture and is highly regulated by endogenous and environmental cues. Two classes of hormones, auxin and cytokinin, have long been known to have an important involvement in controlling shoot branching. Previous studies using a series of mutants with enhanced shoot branching suggested the existence of a third class of hormone(s) that is derived from carotenoids, but its chemical identity has been unknown. Here we show that levels of strigolactones, a group of terpenoid lactones, are significantly reduced in some of the branching mutants. Furthermore, application of strigolactones inhibits shoot branching in these mutants. Strigolactones were previously found in root exudates acting as communication chemicals with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Thus, we propose that strigolactones act as a new hormone class-or their biosynthetic precursors-in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.
The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.
The growth of plants depends on continuous function of the meristems. Shoot meristems are responsible for all the post-embryonic aerial organs, such as leaves, stems and flowers. It has been assumed that the phytohormone cytokinin has a positive role in shoot meristem function. A severe reduction in the size of meristems in a mutant that is defective in all of its cytokinin receptors has provided compelling evidence that cytokinin is required for meristem activity. Here, we report a novel regulation of meristem activity, which is executed by the meristem-specific activation of cytokinins. The LONELY GUY (LOG) gene of rice is required to maintain meristem activity and its loss of function causes premature termination of the shoot meristem. LOG encodes a novel cytokinin-activating enzyme that works in the final step of bioactive cytokinin synthesis. Revising the long-held idea of multistep reactions, LOG directly converts inactive cytokinin nucleotides to the free-base forms, which are biologically active, by its cytokinin-specific phosphoribohydrolase activity. LOG messenger RNA is specifically localized in shoot meristem tips, indicating the activation of cytokinins in a specific developmental domain. We propose the fine-tuning of concentrations and the spatial distribution of bioactive cytokinins by a cytokinin-activating enzyme as a mechanism that regulates meristem activity.
SummaryA rice gene encoding a calcium-dependent protein kinase (CDPK), OsCDPK7, was induced by cold and salt stresses. To elucidate the physiological function of OsCDPK7, we generated transgenic rice plants with altered levels of the protein. The extent of tolerance to cold and salt/drought stresses of these plants correlated well with the level of OsCDPK7 expression. Therefore, OsCDPK7 was shown to be a positive regulator commonly involved in the tolerance to both stresses in rice. Over-expression of OsCDPK7 enhanced induction of some stress-responsive genes in response to salinity/drought, but not to cold. Thus, it was suggested that the downstream pathways leading to the cold and salt/drought tolerance are different from each other. It seems likely that at least two distinct pathways commonly use a single CDPK, maintaining the signalling speci®city through unknown post-translational regulation mechanisms. These results demonstrate that simple manipulation of CDPK activity has great potential with regard to plant improvement.
SummaryPlant architecture is mostly determined by shoot branching patterns. Apical dominance is a well-known control mechanism in the development of branching patterns, but little is known regarding its role in monocots such as rice. Here, we show that the concept of apical dominance can be applied to tiller bud outgrowth of rice. In dwarf10 (d10), an enhanced branching mutant of rice, apical dominance can be observed, but the inhibitory effects of the apical meristem was reduced. D10 is a rice ortholog of MAX4/RMS1/DAD1 that encodes a carotenoid cleavage dioxygenase 8 and is supposed to be involved in the synthesis of an unidentified inhibitor of shoot branching. D10 expression predominantly occurs in vascular cells in most organs. Real-time polymerase chain reaction analysis revealed that accumulation of D10 mRNA is induced by exogenous auxin. Moreover, D10 expression is upregulated in six branching mutants, d3, d10, d14, d17, d27 and high tillering dwarf (htd1). No such effects were found for D3 or HTD1, the MAX2 and MAX3 orthologs, respectively, of rice. These findings imply that D10 transcription might be a critical step in the regulation of the branching inhibitor pathway. In addition, we present observations that suggest that FINE CULM1 (FC1), a rice ortholog of teosinte branched 1 (tb1), possibly works independently of the branching inhibitor pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.