Activation-induced cytidine deaminase (AID) is the essential and sole B cell-specific factor required for class-switch recombination (CSR) and somatic hypermutation (SHM). However, it is not known how AID differentially regulates these two independent events. Involvement of several cofactors interacting with AID has been indicated by scattered distribution of loss-of-function point mutations and evolutionary conservation of the entire 198-amino-acid protein. Here, we report that human AID mutant proteins with insertions, replacements or truncations in the C-terminal region retained strong SHM activity but almost completely lost CSR activity. These results indicate that AID requires interaction with a cofactor(s) specific to CSR.
In order to understand the specificity of sequences or structures recognized by a recombinase involved in class switch recombination (CSR), we examined the relative CSR efficiency of various switch sequences in artificial CSR constructs that undergo CSR in CH12F3-2 murine B lymphoma line. Since CSR recombination is not specific to switch regions of different isotypes or orientation of S sequences, we examined the efficiency of S sequences of non-mammalian species and artificial sequences which lack several characters of mammal switch sequences: chicken S(mu), Xenopus S(mu), telomere, multiple cloning site (MCS) and unrelated negative control sequence. CSR occurred in chicken S(mu) and MCS with significantly higher efficiency than the negative control. A common character of these two sequences is that they are rich in palindrome and stem-loop structures. However, telomeres, which are G-rich and repetitive but not palindromic, could not serve as switch sequences at all. The AT-rich Xenopus S(mu) sequence was inefficient but capable of CSR. CSR breakpoint distribution suggests that the cleavage may take place preferentially in the proximity of the junctions (neck) between the loop and stem in the secondary structure of the single-stranded S sequence, which can be formed by palindromic sequences. The results suggest that the secondary structure of S-region sequences which is transiently formed during transcription may be necessary for recognition by class switch recombinase.
We describe a model system for class switch recombination (CSR) using CH12F3-2 cells transfected with a DNA construct containing two S sequences transcribed by different promoters and separated by a viral thymidine kinase (TK) gene. Recombination observed using this system shares key properties with physiological CSR: deletion of DNA between two S regions, requirement for cytokine stimulation, and nonhomologous and no consensus breakpoint sequences. Studies on transfectants with variants of this construct led us to the following conclusions: (1) two S sequences are required for CSR; (2) isotype specificity of recombination is not determined by nucleotide sequences of S regions; (3) S sequences are not strand-specific; and (4) induction of recombination activity requires cytokine stimulation.
A novel trypsin-type serine proteinase, which processes the precursors of the envelope fusion glycoproteins of pneumotropic Sendai and human influenza A viruses, was purified to homogeneity from pig lungs. On SDS/PAGE, the purified enzyme gave a protein band corresponding to about 32 kDa, and has an apparent molecular mass of 120 kDa, as determined by gel permeation chromatography. Immunohistochemical staining with antibodies against this enzyme revealed that the enzyme is located in pig lung mast cells. The N-terminal 44-amino-acid sequence of the enzyme exhibits about 80% identity with those of mast cell tryptases from other species. Of the inhibitors tested, di-isopropyl fluorophosphate, antipain, leupeptin, benzamidine and a few proteinaceous inhibitors, such as mucus protease inhibitor and aprotinin, inhibited this enzyme activity. Heparin stabilized the enzyme, but high-ionic-strength conditions did not, unlike for human mast cell tryptase. The purified enzyme efficiently processed the fusion glycoprotein precursor of Sendai virus and slowly processed hemagglutinin of human influenza A virus, and triggered the infectivity of Sendai virus in a dose-dependent manner, although human mast cell tryptase b and rat mast cell tryptase (rat MCP-7) from lungs did not process these fusion glycoproteins at all. These results suggest that mast cell tryptase in pig lungs is the possible trigger of the pneumotropic virus infections.
In 1978, Bosher and Warren first pointed out that the free Ca 2ϩ concentration in cochlear endolymph ([Ca] e ) was unusually low for an extracellular fluid and was gradually increased by anoxia [1]. Only a few experiments have since been conducted to measure the changes in [Ca] Physiology, 53, 35-44, 2003]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.