HighlightWe report evidence of the diversification and interaction of anthocyanin-related MYB activators and basic helix-loop-helix cofactors, which regulate anthocyanin biosynthesis in the potato tuber.
BackgroundPrevious studies have focused on linking soil community structure, diversity, or specific taxa to disturbances. Relatively little attention has been directed to crop monoculture soils, particularly potato monoculture. Information about microbial community changes over time between monoculture and non-monoculture treatments is lacking. Furthermore, few studies have examined microbial communities in potato monoculture soils using a high throughput pyrosequencing approach.Methodology/Principal FindingsSoils along a seven-year gradient of potato monoculture were collected and microbial communities were characterized using high throughput pyrosequencing approach. Principal findings are as follows. First, diversity (H Shannon) and richness (S Chao1) indices of bacterial community, but not of fungal community, were linearly decreased over time and corresponded to a decline of soil sustainability represented by yield decline and disease incidence increase. Second, Fusarium, the only soilborne pathogen-associated fungal genus substantially detected, was linearly increased over time in abundance and was closely associated with yield decline. Third, Fusarium abundance was negatively correlated with soil organic matter (OM) and total nitrogen (TN) but positively with electrical conductivity (EC). Fourth, Fusarium was correlated in abundances with 6 bacterial taxa over time.ConclusionsSoil bacterial and fungal communities exhibited differential responses to the potato monoculture. The overall soil bacterial communities were shaped by potato monoculture. Fusarium was the only soilborne pathogen-associated genus associated with disease incidence increase and yield decline. The changes of soil OM, TN and EC were responsible for Fusarium enrichment, in addition to selections by the monoculture crop. Acidobacteria and Nitrospirae were linearly decreased over time in abundance, corresponding to the decrease of OM, suggesting their similar ecophysiologial trait. Correlations between abundance of Fusarium with several other bacterial taxa suggested their similar behaviors in responses to potato monoculture and/or soil variables, providing insights into the ecological behaviors of these taxa in the environment.
IntroductionThe potato (Solanum tuberosum) cultivar ‘Xin Daping’ is tetraploid with white skin and white flesh, while the cultivar ‘Hei Meiren’ is also tetraploid with purple skin and purple flesh. Comparative transcriptome analysis of white and purple cultivars was carried out using high-throughput RNA sequencing in order to further understand the mechanism of anthocyanin biosynthesis in potato.Methods and ResultsBy aligning transcript reads to the recently published diploid potato genome and de novo assembly, 209 million paired-end Illumina RNA-seq reads from these tetraploid cultivars were assembled on to 60,930 transcripts, of which 27,754 (45.55%) are novel transcripts and 9393 alternative transcripts. Using a comparison of the RNA-sequence datasets, multiple versions of the genes encoding anthocyanin biosynthetic steps and regulatory transcription factors were identified. Other novel genes potentially involved in anthocyanin biosynthesis in potato tubers were also discovered. Real-time qPCR validation of candidate genes revealed good correlation with the transcriptome data. SNPs (Single Nucleotide Polymorphism) and indels were predicted and validated for the transcription factors MYB AN1 and bHLH1 and the biosynthetic gene anthocyanidin 3-O-glucosyltransferase (UFGT).ConclusionsThese results contribute to our understanding of the molecular mechanism of white and purple potato development, by identifying differential responses of biosynthetic gene family members together with the variation in structural genes and transcription factors in this highly heterozygous crop. This provides an excellent platform and resource for future genetic and functional genomic research.
a b s t r a c tUrban residential buildings are formed, maintained and reformed by different external material and energy flows, and their behaviors of input, accumulation and output are characterized by their architectural factors and modes of use that usually determine the consumption of material and energy of a building at its overall life cycle.In this research, we took Beijing city, a rapid developing city as a case study, and examined material flows of urban residential building system based on a survey of typical residential buildings in the urban areas of Beijing city. The quantitative analysis were made to describe the input, transformation/accumulation, and output of building materials from the year 1949 to 2008, and a comparative analysis was done to identify the differences of material uses among the buildings with different architectural structures as masonry-concrete, and steel-concrete.During the period from 1949 to 2008, there were six main materials of cement, sand, gravel, steel, bricks and timber used in urban residential building system in Beijing. The total amount of material imported into the system was 5.1 × 10 8 t, among which the accumulated amount was 4.7 × 10 8 t, an accumulation rate of 92.5%, and the total of building wastes reached 3.9 × 10 7 t. Among the buildings with two architectural structures, the total amount of material use for buildings with steel-concrete structure was larger than masonry-concrete. It was found that the buildings with steel-concrete structure experienced a rapid increase since the year 1979 in Beijing. As a result of rapid urban development, the large-scale reformation and demolishment of urban old buildings also led to a rapid growth of the amount of building wastes. And the building wastes generated in the process of reformation and demolition began to exceed that produced in the process of new buildings construction. The amount of building wastes generated from 2004 to 2008 accounted for 52.2% of the total that generated from 1949 to 2008.From this research, the rapid development of Beijing's residential building system in the past 60 years became a big ecological pressure for urban sustainable building development. It is important to change the traditional model of urban construction, and develop some sustainable or ecologically friendly construction technologies to enhance the capacity of recycling and reuse of residential building wastes for realizing a sustainable urban building construction and management in Beijing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.