Abstract-Aging is associated with dysfunction of endothelial progenitor cells (EPCs), and shear stress has a beneficial impact on EPC function; however, the effects of aging and shear stress on the endothelial repair capacity of EPCs after arterial injury have not been reported. Here we investigated the influence of aging and shear stress on the reendothelialization capacity of human EPCs and the related molecular mechanism. Compared with EPCs isolated from young subjects, EPCs from the elderly displayed an impaired migration and adhesion in vitro and demonstrated a significantly reduced reendothelialization capacity in vivo after transplantation into nude mice with carotid artery denudation injury. Shear stress pretreatment enhances the migration, adhesion, and reendothelialization capacity in both young and elderly EPCs; however, it was to a greater extent in EPCs from the elderly. Although basal CXC chemokine receptor 4 (CXCR4) expression was similar in EPCs from the 2 age groups, the stromal cell derived factor 1-induced CXCR4 and Janus kinase 2 phosphorylations were much lower in the elderly than in young EPCs. Shear stress treatment upregulated CXCR4 expression and phosphorylation and, importantly, restored the stromal cell-derived factor 1/CXCR4-dependent Janus kinase 2 phosphorylation in the elderly EPCs. Furthermore, short hairpin RNA-mediated knockdown of CXCR4 expression or pretreatment with Janus kinase 2 inhibitor diminished the enhancement in the migration, adhesion, and reendothelialization capacity of the elderly EPCs from shear stress treatments. Thus, our study demonstrates that upregulation of the CXCR4/Janus kinase 2 pathway by shear stress contributes to the enhanced reendothelialization capacity of EPCs from elderly men. A ging is a well-recognized risk factor for cardiovascular disease. 1,2 The impact of aging, a traditional detrimental factor, for the increased development of cardiovascular disease is initiated by abnormalities in structure and function of the vascular endothelium.3-5 Thus, it is of particular importance to maintain the integrity of the vascular endothelium after arterial injury with aging.Accelerated reendothelialization is an important therapeutic means for repair of injured artery. Accumulating evidence indicates that circulating endothelial progenitor cells (EPCs) provide an endogenous repair mechanism to counteract ongoing risk factor-induced endothelial injury and to replace dysfunctional endothelium, 6-10 thus suggesting an important role of circulating EPCs for restoration of the integrity of the vascular endothelium with aging. Previous studies showed that aging leads to a reduction in the number of circulating EPCs, and aging is associated with dysfunctional EPCs in both healthy persons and patients with cardiovascular disease, [11][12][13][14][15][16] which is, at least in part, responsible for the development of age-related endothelial injury in humans. [17][18][19] However, the mechanism underlying age-related EPC dysfunction is not fully understood. It is, t...
BackgroundPrevious studies have focused on linking soil community structure, diversity, or specific taxa to disturbances. Relatively little attention has been directed to crop monoculture soils, particularly potato monoculture. Information about microbial community changes over time between monoculture and non-monoculture treatments is lacking. Furthermore, few studies have examined microbial communities in potato monoculture soils using a high throughput pyrosequencing approach.Methodology/Principal FindingsSoils along a seven-year gradient of potato monoculture were collected and microbial communities were characterized using high throughput pyrosequencing approach. Principal findings are as follows. First, diversity (H Shannon) and richness (S Chao1) indices of bacterial community, but not of fungal community, were linearly decreased over time and corresponded to a decline of soil sustainability represented by yield decline and disease incidence increase. Second, Fusarium, the only soilborne pathogen-associated fungal genus substantially detected, was linearly increased over time in abundance and was closely associated with yield decline. Third, Fusarium abundance was negatively correlated with soil organic matter (OM) and total nitrogen (TN) but positively with electrical conductivity (EC). Fourth, Fusarium was correlated in abundances with 6 bacterial taxa over time.ConclusionsSoil bacterial and fungal communities exhibited differential responses to the potato monoculture. The overall soil bacterial communities were shaped by potato monoculture. Fusarium was the only soilborne pathogen-associated genus associated with disease incidence increase and yield decline. The changes of soil OM, TN and EC were responsible for Fusarium enrichment, in addition to selections by the monoculture crop. Acidobacteria and Nitrospirae were linearly decreased over time in abundance, corresponding to the decrease of OM, suggesting their similar ecophysiologial trait. Correlations between abundance of Fusarium with several other bacterial taxa suggested their similar behaviors in responses to potato monoculture and/or soil variables, providing insights into the ecological behaviors of these taxa in the environment.
The composition and pyrolysis characteristics of 60 types of biomass waste from the following six source categories were compared: agricultural residues, woody pruning waste from gardens and lawns, aquatic plant material from eutrophic water bodies, nutshells and fruit peels, livestock manure and residual sludge from municipal wastewater treatment. The yield and physicochemical characteristics of the biochar produced from these feedstocks at 350°C, 500°C and 650°C were also examined. Results of correlation and canonical correspondence analysis between feedstock composition and biochar properties showed that feedstock type played an important role in controlling yield and properties of biochars. The yields of biochar dry ash-free (daf.) basis were positively correlated with cellulose, lignin and lignin/cellulose content of feedstock; and ash content hampered the biochar production. Furthermore, the intensity of correlation between biochar yield and its feedstock composition was improved with pyrolysis temperature and degree of feedstock decomposition. The fixed carbon content in biochar was also negatively influenced by ash content of feedstock, and it increased with increasing pyrolysis temperature when the ash content was below 34.57% in feedstock and decreased when the ash content exceeded. The fixed carbon production in biochar per unit ash-free mass (af.) was positively related to cellulose, lignin and lignin/cellulose content in feedstock, which were same with the yield of biochar (daf.). But on the contrary, the volatiles content in biochar (af.) had negative correlation with these organic constituents. For most feedstocks, the differences in the biochar characteristics among the biomass categories were greater than within any individual category. C/N, H/C and O/C atomic ratio and bulk density of biochar from different types of biomass were also compared. The results will provide guidance for the reutilization of biomass wastes and production of biochar with specified properties for soil amendment applications.
Findings suggest that PrEP implementation strategies should first address issues including but not limited to accurate self-assessment of HIV risk, mistrust and limited knowledge about medical trials and PrEP, and ease of accessing PrEP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.