Cervical cancer is one of the most common gynecological cancers. Cisplatin resistance remains a major hurdle in the successful treatment of cervical cancer. Aberrant expression of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are implicated in cisplatin resistance. However, the regulatory functions of lncRNAs and miRNAs in cervical cancer cisplatin resistance and the underlying mechanisms are still elusive. Our qRT-PCR assays verified that miR-206 levels were down-regulated in cisplatin-resistant cervical cancer cells. The introduction of miR-206 sensitized cisplatin-resistant cervical cancer cells to cisplatin. Our qRT-PCR and luciferase reporter assays showed that Cyclin D2 (CCND2) was the direct target for miR-206 in cervical cancer cells. The cisplatin-resistant cervical cancer cells expressed higher CCND2 expression than the parental cells, whereas inhibition of CCND2 could sensitize the resistant cells to cisplatin treatment. Furthermore, we demonstrated that lncRNA OTUD6B-AS1 was up-regulated in cisplatin-resistant cervical cancer cells, and knocking down OTUD6B-AS1 expression induced re-acquirement of chemosensitivity to cisplatin in cervical cancer cells. We also showed that OTUD6B-AS1 up-regulated the expression of CCND2 by sponging miR-206. Low miR-206 and high OTUD6B-AS1 expression were associated with significantly poorer overall survival. Taken together, these results suggest that OTUD6B-AS1-mediated down-regulation of miR-206 increases CCND2 expression, leading to cisplatin resistance. Modulation of these molecules may be a therapeutic approach for cisplatin-resistant cervical cancer.
The acquisition of cancer stem-like properties is believed to be responsible for cancer metastasis and therapeutic resistance in cervical cancer (CC). CC tissues display a high expression level of hexokinase 2 (HK2), which is critical for the proliferation and migration of CC cells. However, little is known about the functional role of HK2 in the maintenance of cancer stem cell-like ability and cisplatin resistance of CC cells. Here, we showed that the expression of HK2 is significantly elevated in CC tissues, and high HK2 expression correlates with poor prognosis. HK2 overexpression (or knockdown) can promote (or inhibit) the sphere-forming ability and cisplatin resistance in CC cells. In addition, HK2-overexpressing CC cells show enhanced expression of cancer stem cell-associated genes (including SOX2 and OCT4) and drug resistance-related gene MDR1. The expression of HK2 is mediated by miR-145, miR-148a, and miR-497 in CC cells. Overexpression of miR-148a is sufficient to reduce sphere formation and cisplatin resistance in CC cells. Our results elucidate a novel mechanism through which miR-148a regulates CC stem cell-like properties and chemoresistance by interfering with the oncogene HK2, providing the first evidence that dysregulation of the miR-148a/HK2 signaling plays a critical role in the maintenance of sphere formation and cisplatin resistance of CC cells. Our findings may guide future studies on therapeutic strategies that reverse cisplatin resistance by targeting this pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.