Device-edge-cloud cooperative computing is increasingly popular as it can effectively address the problem of the resource scarcity of user devices. It is one of the most challenging issues to improve the resource efficiency by task scheduling in such computing environments. Existing works used limited resources of devices and edge servers in preference, which can lead to not full use of the abundance of cloud resources. This article studies the task scheduling problem to optimize the service level agreement satisfaction in terms of the number of tasks whose hard-deadlines are met for device-edge-cloud cooperative computing. This article first formulates the problem into a binary nonlinear programming, and then proposes a heuristic scheduling method with three stages to solve the problem in polynomial time. The first stage is trying to fully exploit the abundant cloud resources, by pre-scheduling user tasks in the resource priority order of clouds, edge servers, and local devices. In the second stage, the proposed heuristic method reschedules some tasks from edges to devices, to provide more available shared edge resources for other tasks cannot be completed locally, and schedules these tasks to edge servers. At the last stage, our method reschedules as many tasks as possible from clouds to edges or devices, to improve the resource cost. Experiment results show that our method has up to 59% better performance in service level agreement satisfaction without decreasing the resource efficiency, compared with eight of classical methods and state-of-the-art methods.
Task scheduling helps to improve the resource efficiency and the user satisfaction for Device-Edge-Cloud Cooperative Computing (DE3C), by properly mapping requested tasks to hybrid device-edge-cloud resources. In this paper, we focused on the task scheduling problem for optimizing the Service-Level Agreement (SLA) satisfaction and the resource efficiency in DE3C environments. Existing works only focused on one or two of three sub-problems (offloading decision, task assignment and task ordering), leading to a sub-optimal solution. To address this issue, we first formulated the problem as a binary nonlinear programming, and proposed an integer particle swarm optimization method (IPSO) to solve the problem in a reasonable time. With integer coding of task assignment to computing cores, our proposed method exploited IPSO to jointly solve the problems of offloading decision and task assignment, and integrated earliest deadline first scheme into the IPSO to solve the task ordering problem for each core. Extensive experimental results showed that our method achieved upto 953% and 964% better performance than that of several classical and state-of-the-art task scheduling methods in SLA satisfaction and resource efficiency, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.