BackgroundClinicians may fail to make an early diagnosis of pulmonary cryptococcosis (PC) without HIV infection. Serum cryptococcal capsular polysaccharide antigen (CrAg) test, histopathology and culture of lung tissue play different roles in diagnosis of PC.ObjectiveTo investigate the performance of serum CrAg test, histopathology and culture of the lung tissue in diagnosis of PC without HIV infection.Patients/methodsFrom January 2011 to September 2017, patients with proven PC were recruited from a teaching hospital in southern China. Those patients with HIV infection, PC confirmed by surgery or PC with probable or possible diagnosis were excluded from the study. Latex agglutination test and CrAg lateral flow assay were used for detection of serum CrAg. Lung biopsy and needle aspiration were performed under computed tomography guidance.ResultsEighty-nine patients with proven PC including 41 male (46.1%) and 48 female (53.9%) were enrolled. Fifty-one (57.3%) patients had underlying disease. Positive CrAg test was found in 83 (93.3%) cases. Among six cases with negative CrAg test, PC was confirmed by histology in two cases and positive culture in four cases. The histopathological results of 77 (86.5%) cases revealed cryptococcal granuloma and 12 cases showed chronic inflammation, which was confirmed by positive culture. Among 65 cases, the diseased tissue of 46 (70.8%) cases presented Cryptococcus neoformans in the culture and one case was diagnosed with lung cancer coexisting with PC.ConclusionOur findings showed that serum CrAg test is rapid and sensitive in diagnosing PC, histology is important for confirming PC and culture plays a complementary role. Biopsied lung tissue should be submitted for cultures whenever feasible.
BackgroundCirculating tumor DNA (ctDNA) is a promising biomarker for noninvasive epidermal growth factor receptor (EGFR) mutations detection in lung cancer patients, but the existing methods have limitations in sensitivity or in availability. In this study, we evaluated the performance of a novel assay called ADx-SuperARMS in detecting EGFR mutations in plasma cell-free DNA from patients with advanced lung adenocarcinoma.MethodsA total of 109 patients with metastatic advanced adenocarcinoma were recruited who provided both blood samples and matched tumor tissue samples. EGFR mutation status in plasma samples were tested with ADx-SuperARMS EGFR assay and tumor tissue samples were tested with ADx-ARMS EGFR assay. The clinical sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) of ADx-SuperARMS EGFR assay were calculated by using EGFR mutation status in tumor tissue as standard reference. A receiver operating characteristic (ROC) analysis was implemented and an area under the curve (AUC) was calculated to evaluate sensitivity and specificity of exon 19 deletion (E19Del) and L858R mutation detection. The objective response rate (ORR) were calculated according to the EGFR mutation status determined by ADx-superARMS as well.Results0.2% analytical sensitivity and 100% specificity of the ADx-SuperARMS EGFR assays for EGFR E19Del, L858R, and T790M mutants were confirmed by using a series of diluted cell line DNA. In the clinical study, EGFR mutations were detected in 45.9% (50/109) of the plasma samples and in 56.9% (62/109) of the matched tumor tissue samples. The sensitivity, specificity, PPV and NPV of the ADx-SuperARMS EGFR assay for plasma EGFR mutation detection were 82.0% (50/61), 100% (48/48), 100% (50/50), and 81.4% (48/59), respectively. In ROC analysis, ADx-SuperARMS achieved sensitivity and specificity of 88% and 99% in E19Dels as well as sensitivity and specificity of 89% and 100% in L858R, respectively. Among the 35 patients who were plasma EGFR mutation positive and treated with first generation of EGFR-tyrosine kinase inhibitors (TKIs), 23 (65.7%) achieved partial response, 11 (31.4%) sustained disease, and 1 (2.9%) progressive disease. The ORR and disease control rate (DCR) were 65.7% and 97.1%, respectively.ConclusionsADx-SuperARMS EGFR assay is likely to be a highly sensitive and specific method to noninvasively detect plasma EGFR mutations of patients with advanced lung adenocarcinoma. The EGFR mutations detected by ADx-SuperARMS EGFR assay could predict the efficacy of the treatment with first generation of EGFR-TKIs. Hence, EGFR blood testing with ADx-SuperARMS could address the unmet clinical needs.
Background: Previous studies have shown that there are different methods used to detect the epidermal growth factor receptor (EGFR) mutation status in plasma cell-free DNA (cfDNA) for advanced lung adenocarcinoma patients including the ADx-Amplification Refractory Mutation System (ADx-ARMS). We explored the performance of the ADx-ARMS in detecting the EGFR mutations in cfDNA. Methods: This prospective cohort study enrolled patients who presented with advanced (stage IIIb/IV) lung adenocarcinoma. EGFR mutations in plasma cfDNA and tumor tissues by ADx-ARMS were detected. Next-generation sequencing (NGS) in plasma was performed in patients with inconsistent gene region mutations in the plasma and matched tissue samples. We calculated the clinical parameters of the ADx-ARMS for EGFR mutation status in the plasma of cfDNA, using the tumor tissues as the standard for measurement. The objective response rate (ORR) and progression-free survival (PFS) were also calculated for patients receiving first-generation EGFR-tyrosine kinase inhibitors (TKIs) therapy. Results: In total, 203 patients were included in the final analysis. Mutations were discovered in 58.6% (119/203) of the tumor tissues and 31.0% (63/203) were detected EGFR mutations in both tumor tissues and matched plasma. The sensitivity and the specificity setting for detecting the EGFR mutations in the plasma using the ADx-ARMS were configured to 52.9% and 98.8%. An ORR of 64.8% was observed among the 71 patients who were identified as being EGFR-positive in their tumor tissues, who had received treatments using Gefitinib or Icotinib. Next, the ORR was observed to be 69.0% among the 42 patients with an EGFR mutation in their plasma. The median PFS of the patients with an EGFR mutation in tumor tissues and plasma were 10.0 vs. 11.0 months (P=0.175). The median PFS of the patients with an EGFR wild-type in the plasma was 8.7 months, which was significantly shorter than the EGFR mutant-type in plasma (P=0.001). Conclusions: Using ADx-ARMS as an approach with high specificity but moderate sensitivity to detect the EGFR mutations in plasma cfDNA and EGFR mutation status in plasma cfDNA using the ADx-ARMS can predict the tumor response for EGFR-TKIs.
BackgroundPatients with high-titer anti-IFN-γ autoantibodies present disseminated non-tuberculous mycobacterial (NTM) and other opportunistic infections. Due to its rare occurrence and non-specific symptoms, this syndrome is difficult to diagnose during early disease stages. Here, we report a case with high-concentrations of serum anti-IFN-γ autoantibodies who presented with disseminated Talaromyces marneffei and NTM disease accompanied Sweet’s syndrome.Case presentationA 62-year-old Chinese woman with no previous history was admitted to our hospital in August 2016 due to intermittent fever for 2 years, left chest wall redness, and swelling for 3 months. During hospitalization, the patient was confirmed with disseminated T. marneffei and successfully treated with antifungal therapy. In July 2017, upon second admission, Mycobacterium avium intracellular (MAC) pulmonary infection was established after positive cultures from the right lung tissue. The patient failed treatment after 1 month of anti-NTM therapy due to side effects. In May 2018, she was confirmed as having disseminated MAC disease accompanied by hand rashes, which was considered as Sweet’s syndrome. High-level anti-IFN-γ antibodies in the patient serum were detected upon comparison with normal controls (2.85-fold increase). Following anti-NTM therapy, both symptoms and pulmonary infiltration gradually improved, and joint destruction and lymphadenitis remained.ConclusionsPatients with anti-interferon-γ autoantibodies should be considered for severe, recurrent infections in adults in the absence of other known risk factors. Sweet’s syndrome is a common skin manifestation of the syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.