BACKGROUND CONTEXT: Lumbar intervertebral disk herniation (LDH) is a common disease that causes low back pain, radiating leg pain, and sensory impairment. Preclinical studies rely heavily upon standardized animal models of human diseases to predict clinical treatment efficacy and to identify and investigate potential adverse events in human subjects. The current method for making the LDH model involves harvesting the nucleus pulposus (NP) from autologous coccygeal disks and applying to the lumbar nerve roots just proximal to the corresponding dorsal root ganglion. However, this surgical method generates a model that exhibits very different characteristics of disk herniation than that observed in human. PURPOSE: To produce a rat LDH model that better resembles disk herniation in humans and a standardized and uniform LDH model using Interleukin-1 beta (IL-1b). STUDY DESIGN: Experimental rat LDH model. METHODS: We exposed the L5−6 disk dorsolaterally on the right side through hemi-laminectomy without nerve compression. Herniation was initiated by puncturing the exposed disk with a 30-gauge needle at a depth of 4 mm. Interleukin-1 beta (IL-1b) was injected simultaneously to heighten the pathological processes of disk degeneration, including inflammatory responses, matrix destruction, and herniation of the NP. We performed histological staining to assess morphological changes, immunohistochemistry to analyze inflammation-and pain-related expression within and around the puncture site of the L5−6 disk, and real-time polymerase chain reaction to examine expression of markers for degenerative processes. In addition, we performed locomotor tests on the rats. RESULTS: We found that the IL-1b groups showed that the border between the annulus fibrosis and nucleus pulposus was severely interrupted compared to that of the control (puncture only) group. And, the injection of IL-1b leads to accelerated disk degeneration and inflammation in a more consistent manner in LDH model. Functional deficit was consistently induced by puncturing and injection of IL-1b in the exposed disk. CONCLUSIONS: The method proposed here can be used as an index to control the severity of disk degeneration and inflammation through the injected IL-1b concentration concurrent with surgically induced herniation. CLINICAL SIGNIFICANCE: Our proposed model may facilitate research in drug development to evaluate the efficacy of potential therapeutic agents for disk herniation and neuropathic pain and may also be used for nonclinical studies to more accurately assess the effectiveness of various treatment strategies according to the severity of disk degeneration.
Apamin is a minor component of bee venom and is a polypeptide with 18 amino acid residues. Although apamin is considered a neurotoxic compound that blocks the potassium channel, its neuroprotective effects on neurons have been recently reported. However, there is little information about the underlying mechanism and very little is known regarding the toxicological characterization of other compounds in bee venom. Here, cultured mature cortical neurons were treated with bee venom components, including apamin, phospholipase A2, and the main component, melittin. Melittin and phospholipase A2 from bee venom caused a neurotoxic effect in dose-dependent manner, but apamin did not induce neurotoxicity in mature cortical neurons in doses of up to 10 µg/mL. Next, 1 and 10 µg/mL of apamin were applied to cultivate mature cortical neurons. Apamin accelerated neurite outgrowth and axon regeneration after laceration injury. Furthermore, apamin induced the upregulation of brain-derived neurotrophic factor and neurotrophin nerve growth factor, as well as regeneration-associated gene expression in mature cortical neurons. Due to its neurotherapeutic effects, apamin may be a promising candidate for the treatment of a wide range of neurological diseases.
Lumbar spinal stenosis (LSS) is a common degenerative spinal condition in older individuals that causes impaired walking and other disabilities due to severe lower back and leg pain. Ligamentum flavum hypertrophy is a major LSS cause that may result from oxidative stress caused by degenerative cascades, including imbalanced iron homeostasis that leads to excessive reactive oxygen species production. We investigated the effects of Harpagophytum procumbens (HP) on iron-induced oxidative stress associated with LSS pathophysiology. Primary spinal cord neuron cultures were incubated in FeSO4-containing medium, followed by addition of 50, 100, or 200 μg/mL HP. Cell viability was assessed by CCK-8 and live/dead cell assays and by propidium iodide-live imaging. In an in vivo rat model of LSS, HP were administered at 100, 200, and 400 mg/kg, and disease progression was monitored for up to 3 weeks. We investigated the in vitro and in vivo effects of HP on iron-induced neurotoxicity by immunochemistry, real-time PCR, and flow cytometry. HP exerted neuroprotective effects and enhanced neurite outgrowths of iron-injured rat primary spinal cord neurons in vitro. HP treatment significantly reduced necrotic cell death and improved cells’ antioxidative capacity via the NRF2 signaling pathway in iron-treated neurons. At 1 week after HP administration in LSS rats, the inflammatory response and oxidative stress markers were substantially reduced through regulation of excess iron accumulation. Iron that accumulated in the spinal cord underneath the implanted silicone was also regulated by HP administration via NRF2 signaling pathway activation. HP-treated LSS rats showed gradually reduced mechanical allodynia and amelioration of impaired behavior for 3 weeks. We demonstrated that HP administration can maintain iron homeostasis within neurons via activation of NRF2 signaling and can consequently facilitate functional recovery by regulating iron-induced oxidative stress. This fundamentally new strategy holds promise for LSS treatment.
Inula britannica var. chinensis (IBC) has been used as a traditional medicinal herb to treat inflammatory diseases. Although its anti-inflammatory and anti-oxidative effects have been reported, whether IBC exerts neuroprotective effects and the related mechanisms in cortical neurons remain unknown. In this study, we investigated the effects of different concentrations of IBC extract (5, 10, and 20 µg/mL) on cortical neurons using a hydrogen peroxide (H2O2)-induced injury model. Our results demonstrate that IBC can effectively enhance neuronal viability under in vitro-modeled reaction oxygen species (ROS)-generating conditions by inhibiting mitochondrial ROS production and increasing adenosine triphosphate level in H2O2-treated neurons. Additionally, we confirmed that neuronal death was attenuated by improving the mitochondrial membrane potential status and regulating the expression of cytochrome c, a protein related to cell death. Furthermore, IBC increased the expression of brain-derived neurotrophic factor and nerve growth factor. Furthermore, IBC inhibited the loss and induced the production of synaptophysin, a major synaptic vesicle protein. This study is the first to demonstrate that IBC exerts its neuroprotective effect by reducing mitochondria-associated oxidative stress and improving mitochondrial dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.